Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemElectroChem ; 7(12): 2665-2671, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32742913

ABSTRACT

The research on electrochemical reactors is mostly limited to planarly designed modules. In this study, we compare a tubular and a planar electrochemical reactor for the utilization of the slurry electrodes. Cylindrical formed geometries demonstrate a higher surface-to-volume ratio, which may be favorable in terms of current density and volumetric power density. A tubular shaped electrochemical reactor is designed with conductive static mixers to promote the slurry particle mixing, and the vanadium redox flow battery is selected as a showcase application. The new tubular design presents similar cell resistances to the previously designed planar battery and shows increased discharge polarization behavior up to 100 mA cm-2. The volumetric power density reaches up to 30 mW cm-3, which is two times higher than that of the planar one. The battery performance is further investigated and 85 % coulombic, 70 % voltage and 60 % energy efficiency is found at 15 mA cm-2 with 15 wt.% slurry content.

2.
ACS Appl Mater Interfaces ; 12(10): 12030-12042, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32013387

ABSTRACT

Efficient operation is crucial for the deployment of photoelectrochemical CO2 reduction devices for large-scale artificial photosynthesis. In these devices, undesired transport of CO2 reduction products from the reduction electrode to the oxidation electrode may occur through a liquid electrolyte and an ion exchange membrane, reducing device productivity and increasing the energy required for product purification. Our work investigated the CO2 reduction product crossover through ion exchange membranes separating the cathode and anode compartments in CO2 reduction cells. The concentrations of liquid products produced by CO2 reduction on copper foil were measured. A systematic approach for the investigation of product crossover was developed. The crossover of products was analyzed over a range of working electrode potentials (-1.08 V vs RHE to -0.88 V vs RHE) in cells employing a commercial Selemion AMV membrane and a new poly(vinylimidazolium) family of ion exchange membranes with variable chemical and structural properties. We found that product loss due to electromigration of charged species in the device was more significant than product loss due to diffusion of uncharged species. To reduce the crossover of CO2 reduction products, the influence of membrane properties such as the ionic conductivity and water volume fraction was investigated for the Selemion AMV membrane and poly(vinylimidazolium) membranes with variable material properties. We show that the water volume fraction and, by extension, ionic conductivity of the membrane may be controlled to reduce product crossover in CO2 reduction artificial photosynthesis devices.

3.
IEEE Trans Biomed Eng ; 66(3): 821-830, 2019 03.
Article in English | MEDLINE | ID: mdl-30028689

ABSTRACT

OBJECTIVE: For tissue engineering, there is a need for quantitative methods to map cell density inside three-dimensional (3-D) bioreactors to assess tissue growth over time. The current cell mapping methods in 2-D cultures are based on optical microscopy. However, optical methods fail in 3-D due to increased opacity of the tissue. We present an approach for measuring the density of cells embedded in a hydrogel to generate quantitative maps of cell density in a living, 3-D tissue culture sample. METHODS: Quantification of cell density was obtained by calibrating the 1H T2, magnetization transfer (MT) and diffusion-weighted nuclear magnetic resonance (NMR) signals to samples of known cell density. Maps of cell density were generated by weighting NMR images by these parameters post-calibration. RESULTS: The highest sensitivity weighting arose from MT experiments, which yielded a limit of detection (LOD) of [Formula: see text] cells/mL/ √{Hz} in a 400 MHz (9.4 T) magnet. CONCLUSION: This mapping technique provides a noninvasive means of visualizing cell growth within optically opaque bioreactors. SIGNIFICANCE: We anticipate that such readouts of tissue culture growth will provide valuable feedback for controlled cell growth in bioreactors.


Subject(s)
Cell Count/methods , Hydrogels/chemistry , Imaging, Three-Dimensional/methods , Magnetic Resonance Spectroscopy/methods , Bioreactors , Cells, Cultured , HEK293 Cells , Humans , Saccharomyces cerevisiae/cytology , Signal Processing, Computer-Assisted , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...