Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinspir Biomim ; 15(1): 015002, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31509804

ABSTRACT

Understanding the hydrodynamics of self-propelled organisms is critical to evaluate the role of migrating zooplankton aggregations in sustaining marine ecosystems via the transport of nutrients and mixing of fluid properties. Analysis of transport and mixing during swimming is thus essential to assess whether biomixing is a relevant source of kinetic energy in the upper ocean. In this study, dilute swarms of the ephyral Aurelia aurita were simulated under different configurations to analyze the effects of inter-organism spacing and structure of a migrating aggregation on fluid transport. By using velocimetry data instead of numerically simulated velocity fields, our study integrates the effects of the near- and far-field flows. Lagrangian analysis of simulated fluid particles, both in homogeneous and stratified fluid, shows that the near-field flow ultimately dictates fluid dispersion. The discrepancy between our results and predictions made using low-order models (both in idealized fluid and within the Stokes limit) highlights the need to correctly represent the near-field flow resulting from swimming kinematics and organism morphology. Derived vertical stirring coefficients for all cases suggest that even in the limit of dilute aggregations, self-propelled organisms can play an important role in transporting fluid against density gradients.


Subject(s)
Animal Migration , Motion , Scyphozoa/physiology , Water Movements , Animals , Biomechanical Phenomena , Computer Simulation , Ecosystem , Hydrodynamics , Models, Biological , Rheology , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...