Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38138351

ABSTRACT

Risedronate sodium (RIS) exhibits limited bioavailability and undesirable gastrointestinal effects when administered orally, necessitating the development of an alternative formulation. In this study, mPEG-coated nanoparticles loaded with RIS-HA-TCS were created for osteoporosis treatment. Thiolated chitosan (TCS) was synthesized using chitosan and characterized using DSC and FTIR, with thiol immobilization assessed using Ellman's reagent. RIS-HA nanoparticles were fabricated and conjugated with synthesized TCS. Fifteen batches of RIS-HA-TCS nanoparticles were designed using the Box-Behnken design process. The nanoparticles were formulated through the ionic gelation procedure, employing tripolyphosphate (TPP) as a crosslinking agent. In silico activity comparison of RIS and RIS-HA-TCS for farnesyl pyrophosphate synthetase enzyme demonstrated a higher binding affinity for RIS. The RIS-HA-TCS nanoparticles exhibited 85.4 ± 2.21% drug entrapment efficiency, a particle size of 252.1 ± 2.44 nm, and a polydispersity index of 0.2 ± 0.01. Further conjugation with mPEG resulted in a particle size of 264.9 ± 1.91 nm, a PDI of 0.120 ± 0.01, and an encapsulation efficiency of 91.1 ± 1.17%. TEM confirmed the spherical particle size of RIS-HA-TCS and RIS-HA-TCS-mPEG. In vitro release studies demonstrated significantly higher release for RIS-HS-TCS-mPEG (95.13 ± 4.64%) compared to RIS-HA-TCS (91.74 ± 5.13%), RIS suspension (56.12 ± 5.19%), and a marketed formulation (74.69 ± 3.98%). Ex vivo gut permeation studies revealed an apparent permeability of 0.5858 × 10-1 cm/min for RIS-HA-TCS-mPEG, surpassing RIS-HA-TCS (0.4011 × 10-4 cm/min), RIS suspension (0.2005 × 10-4 cm/min), and a marketed preparation (0.3401 × 10-4 cm/min).

2.
ACS Omega ; 8(45): 42102-42113, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024758

ABSTRACT

In this study, we fabricated and evaluated luliconazole-loaded electrospun nanofibers for anticandidal activity in the management of vaginal candidiasis. Polycaprolactone (PCL)/gelatin nanofibers were designed by the electrospinning technique, and the Box-Behnken design (BBD) was adopted for optimization to get tailored fibers. The luliconazole (LCZ) drug was mixed into different concentrations (2.5, 5, 7.5, and 10%) of tea tree oil (TT oil) and loaded into the PCL/gelatin nanofibrous mats. The effective anticandidal potential of nanofiber samples were analyzed by the disk-diffusion method. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), XRD analysis, and in silico study were performed. The entrapment efficiency, swelling degree, mechanical strength, contact angle, mucoadhesion, drug release, and permeation study were assessed. The average diameter of the PCL/gelatin-optimized nanofiber was 153 nm. SEM reflected that the fabricated nanofibers were uniform and bead-free. FTIR and DSC analyzed the interaction and physical entrapment of the drug in the polymeric fibers. The entrapment efficiency of the drug-loaded nanofiber was found to be 89.2 ± 0.8%. Maximum swelling percentages at 4 h were 40.8, 18.9, and 14.0% and contact angles were 46.5°, 62.95°, and 65.78° for the blank, TT oil-loaded, and drug-loaded nanofiber, respectively, which indicated the hydrophilic nature of the fibers. The drug-loaded nanofiber had a high tensile strength with satisfactory mucoadhesive property that led to its adhesion to the vaginal mucosa with no tear. The drug-loaded nanofiber had a cumulative drug release of 67.7 ± 3.4% in 48 h, and the 12.8 ± 0.53 mm of zone of inhibition (ZOI) in 48 h illustrated an effective anticandidal activity. The TT oil-loaded nanofiber also exhibited a small ZOI of 4.3 ± 0.30 mm, indicating a synergistic effect to the antifungal activity of the drug-loaded nanofiber. LCZ-loaded nanofibers can emerge as a novel approach for vaginal drug delivery in the treatment of candida infection. Thus, this pharmaceutical investigation can help in formulating preclinical and clinical models.

3.
Pharmaceutics ; 15(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765307

ABSTRACT

Risedronate-loaded mPEG-coated hydroxyapatite, thiolated chitosan-based (coated) and non-coated nanoparticles were tested for their potential effects in the treatment of osteoporosis. The prepared nanoparticles were evaluated for their bone-targeting potential by inducing osteoporosis in female Wistar rats via oral administration of Dexona (dexamethasone sodium phosphate). In vivo pharmacokinetic and pharmacodynamic studies were performed on osteoporotic rat models treated with different formulations. The osteoporotic model treated with the prepared nanoparticles indicated a significant effect on bone. The relative bioavailability was enhanced for RIS-HA-TCS-mPEG nanoparticles given orally compared to RIS-HA-TCS, marketed, and API suspension. Biochemical investigations also showed a significant change in biomarker levels, ultimately leading to bone formation/resorption. Micro-CT analysis of bone samples also demonstrated that the RIS-HA-TCS-mPEG-treated group showed the best results compared to other treatment groups. Moreover, the histology of bone treated with RIS-HA-TCS-mPEG showed a marked restoration of the architecture of trabecular bone along with a well-connected bone matrix and narrow inter-trabecular spaces compared to the toxic group. A stability analysis was also carried out according to ICH guidelines (Q1AR2), and it was found that RIS-HA-TCS-mPEG was more stable than RIS-HA-TCS at 25 °C. Thus, the results of present study indicated that mPEG-RIS-HA-TCS has excellent potential for sustained delivery of RIS for the treatment and prevention of osteoporosis, and for minimizing the adverse effects of RIS typically induced via oral administration.

4.
Pharm Dev Technol ; 28(7): 595-610, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37342048

ABSTRACT

Non-alcoholic fatty liver disease is one of the leading causes of death worldwide. Even if with such a high mortality there is no definite treatment approved. Thus, there is a need to develop a formulation which can have multiple pharmacological activities. Herbal drugs are among the most promising compounds that act by different pharmacological actions. For increasing the bio-activity of Silymarin we had isolated five active biomarker molecules from silymarin extract (as a Phytopharmaceutical) in our previous work. It possesses lower bioavailability due to poor solubility, lesser permeability and first pass metabolism effect. Therefore, from the literature we had screened two bioavailability enhancers i.e. piperine and fulvic acid for overcoming the drawbacks associated with silymarin. Hence, in this study we had first explored the ADME-T parameters and then evaluated their in-silico activity for different enzymes involved in inflammation and fibrosis. Interestingly, it was found that besides the bioavailability enhancing property, piperine and fulvic acid also shown anti-inflammatory and anti-fibrotic action, particularly more activity was demonstrated by fulvic acid than piperine. Furthermore, the concentration of the bioavailability enhancers i.e. 20% FA and 10% PIP were optimized by QbD assisted solubility studies. Moreover, the percentage release and apparent permeability coefficient of the optimized formulation was found to be 95% and 90%, respectively as compared to 6.54*106 and 1.63*106 respectively by SM suspension alone. Furthermore, it was found that plain rhodamine solution penetrated only up to 10 um whereas, formulation penetrated up to 30 um. Thus, combining these three, can not only increase the bioavailability of silymarin, but might also, increase the physiological action synergistically.


Subject(s)
Silymarin , Silymarin/pharmacology , Solubility , Permeability , Biological Availability
5.
Curr Mol Med ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231732

ABSTRACT

RESEARCH BACKGROUND: Breast cancer is the second leading cause of death all over the world and is not only limited to females but also affects males. For estrogen receptor-positive breast cancer, tamoxifen has been considered the gold-line therapy for many decades. However, due to the side effects associated with the use of tamoxifen, its use is only limited to individuals in high-risk groups and limits its clinical application to moderate and/or lower-risk groups. Thus, there is a necessity to decrease the dose of tamoxifen, which can be achieved by targeting the drug to breast cancer cells and limiting its absorption to other body parts. PROBLEM STATEMENT: Artificial antioxidants used in the formulation preparation are assumed to upsurge the risk of cancer and liver damage in humans. The need of the hour is to explore bio-efficient antioxidants from natural plant sources as they are safer and additionally possess antiviral, anti-inflammatory, and anticancer properties. Objectives of the study and research: The objective of this hypothesis is to prepare tamoxifen-loaded PEGylated NiO nanoparticles using green chemistry, tumbling the toxic effects of the conventional method of synthesis for targeted delivery to breast cancer cells. Significance of the research work: The significance of the work is to hypothesize a green method for the synthesis of NiO nanoparticles that are eco-friendly, cost-effective, decrease multidrug resistance, and can be used for targeted therapy. Garlic extract contains an organosulfur compound (Allicin) which has drug-metabolizing, anti-oxidant, and tumour growth inhibition effects. In breast cancer, allicin sensitizes estrogen receptors, increasing the anticancer efficacy of tamoxifen and reducing offsite toxicity. Thus, this garlic extract would act as a reducing agent and a capping agent. The use of nickel salt can help in targeted delivery to breast cancer cells and, in turn, reduces drug toxicity in different organs. Future directions/recommendations: This novel strategy may aim for cancer management with less toxic agents acting as an apt therapeutic modality.

6.
Article in English | MEDLINE | ID: mdl-37157219

ABSTRACT

Cannabis sativa is widely used as a folk medicine in many parts of the globe and has been reported to be a treasure trove of phytoconstituents, including cannabinoids, terpenoids, and flavonoids. Accumulating evidence from various pre-clinical and clinical studies revealed the therapeutic potential of these constituents in various pathological conditions, including chronic pain, inflammation, neurological disorders, and cancer. However, the psychoactive effect and addiction potential associated with cannabis use limited its clinical application. In the past two decades, extensive research on cannabis has led to a resurgence of interest in the clinical application of its constituents, particularly cannabinoids. This review summarizes the therapeutic effect and molecular mechanism of various phytoconstituents of cannabis. Furthermore, recently developed nanoformulations of cannabis constituents have also been reviewed. Since cannabis is often associated with illicit use, regulatory aspects are of vital importance and this review therefore also documented the regulatory aspects of cannabis use along with clinical data and commercial products of cannabis.

7.
Molecules ; 28(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903587

ABSTRACT

In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of -30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 µM and 6.29 ± 0.21 µM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Neoplasms , Humans , Rats , Animals , Magnetite Nanoparticles/chemistry , MCF-7 Cells , Magnetic Iron Oxide Nanoparticles , Drug Carriers , Nanoparticles/chemistry , Iron , Oxides
8.
Heliyon ; 9(3): e13801, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36811017

ABSTRACT

From late 2019, whole world has been facing COVID-19 pandemic which is caused by SARS-CoV-2 virus. This virus primarily attacks the respiratory tract and enter host cell by binding with angiotensin 2 converting enzyme receptors present on alveoli of the lungs. Despite its binding in the lungs, many patients have reported gastrointestinal symptoms and indeed, RNA of the virus have been found in faecal sample of patients. This observation gave a clue of the involvement of gut-lung axis in this disease development and progression. From several studies reported in past two years, intestinal microbiome has shown to have bidirectional link with lungs i.e., gut dysbiosis increases the tendency of infection with COVID-19 and coronavirus can also cause perturbations in intestinal microbial composition. Thus, in this review we have tried to figure out the mechanisms by which disturbances in the gut composition can increase the susceptibility to COVID-19. Understanding these mechanisms can play a crucial role in decreasing the disease outcomes by manipulating the gut microbiome using prebiotics, probiotics, or combination of two. Even, faecal microbiota transplantation can also show better results, but intensive clinical trials need to be done first.

9.
Crit Rev Microbiol ; 49(6): 815-833, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36394607

ABSTRACT

Perturbations in microbial abundance or diversity in the intestinal lumen leads to intestinal inflammation and disruption of intestinal membrane which eventually facilitates the translocation of microbial metabolites or whole microbes to the liver and other organs through portal vein. This process of translocation finally leads to multitude of health disorders. In this review, we are going to focus on the mechanisms by which gut metabolites like SCFAs, tryptophan (Trp) metabolites, bile acids (BAs), ethanol, and choline can either cause the development/progression of non-alcoholic fatty liver disease (NAFLD) or serves as a therapeutic treatment for the disease. Alterations in some metabolites like SCFAs, Trp metabolites, etc., can serve as biomarker molecules whereas presence of specific metabolites like ethanol definitely leads to disease progression. Thus, proper understanding of these mechanisms will subsequently help in designing of microbiome-based therapeutic approaches. Furthermore, we have also focussed on the role of dysbiosis on the mucosal immune system. In addition, we would also compile up the microbiome-based clinical trials which are currently undergoing for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH). It has been observed that the use of microbiome-based approaches like prebiotics, probiotics, symbiotics, etc., can act as a beneficial treatment option but more research needs to be done to know how to manipulate the composition of gut microbes.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Probiotics , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Probiotics/therapeutic use , Ethanol
10.
Article in English | MEDLINE | ID: mdl-36281862

ABSTRACT

The article has been withdrawn at the request of the editor of the journal Current Pharmaceutical Biotechnology.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

11.
Curr Pharm Des ; 27(46): 4677-4685, 2021.
Article in English | MEDLINE | ID: mdl-34176456

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of death related to liver diseases worldwide. Despite this, there is no specific treatment approved for the disease till now, which could be due to the poor understanding of the pathophysiology of this disease. In the past few decades, several scientists have speculated the root cause of NAFLD to be dysbalance in the gut microbiome resulting in a susceptibility to the inflammatory cascade in the liver. Herein, we hypothesize to fabricate a novel formulation containing prebiotic with probiotics which thereby would help in maintaining the gut homeostasis, and be used for the treatment of NAFLD. The proposed novel formulation would contain a Bifidobacterium sp. with Faecalibacterium prausnitzii in the presence of a dietary fibre having hepatoprotective activity. These two strains of probiotics would help in increasing the concentration of butyrate in the gut which in turn would inhibit intestinal inflammation and maintain gut integrity. The dietary fibre would serve a dual mechanism; firstly, it would act as a prebiotic helping in the proliferation of administered probiotics, and secondly, it would protect the liver via its own hepatoprotective action. This combinatorial approach would pave a new therapeutic avenue for the treatment of NAFLD.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Probiotics , Humans , Liver , Non-alcoholic Fatty Liver Disease/drug therapy , Prebiotics , Probiotics/therapeutic use
12.
Indian J Anaesth ; 65(4): 309-315, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34103745

ABSTRACT

BACKGROUND AND AIMS: Limited studies are available comparing diagnostic accuracy of various airway predictors in geriatric patients. We conducted this study with primary aim to evaluate and validate the predictive value of 'standard airway predictors' like modified Mallampati test, thyromental distance (TMD), sternomental distance, neck movement (NM), mouth opening (MO), dentition and 'new airway predictors' like upper lip bite test (ULBT), ratio of height to thyromental distance and thyromental height test (TMHT) for predicting difficult laryngoscopy in geriatric patients. METHODS: This prospective, observational study was conducted on 140 patients above 65 years of age of either sex, scheduled for elective surgery under general anaesthesia requiring endotracheal intubation. The age, weight, height, body mass index (BMI) and airway parameters were recorded. The laryngoscopic view was assessed by modified Cormack-Lehane scale. Standard formulae were used to calculate validity indexes. RESULTS: The incidence of difficult larygoscopy found in our study was 25%. The mean age of our study population was 69.37 ± 4.23 years. TMD exhibited the highest sensitivity (80%) and negative predictive value (NPV) (91.86%) as compared to other studied airway predictors. The positive predictive value (PPV) of ULBT was 100%. Moreover, ULBT exhibited highest accuracy (82.14%) and odds ratio (86.88) and high specificity (91.30%) for predicting difficult laryngoscopy in geriatric patients. NM and TMHT also exhibited high accuracy (77.85%, 77.14%) and PPV (59.09%, 52.94%). CONCLUSIONS: TMD and ULBT both showed good predictive value in diagnosing difficult laryngoscopy in geriatric patients. Furthermore, NM and TMHT also exhibited higher diagnostic accuracy in predicting difficult airway in these patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...