Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794588

ABSTRACT

Using biomass to develop and obtain environmentally friendly and industrially applicable biomaterials is increasingly attracting global interest. Herein, cellulose nanocrystals (CNCs) and lignin nanoparticles (LNPs) were extracted from Lemna minor L., a freshwater free-floating aquatic species commonly called duckweed. To obtain CNCs and LNPs, two different procedures and biomass treatment processes based on bleaching or on the use of an ionic liquid composed of triethylammonium and sulfuric acid ([TEA][HSO4]), followed by acid hydrolysis, were carried out. Then, the effects of these treatments in terms of the thermal, morphological, and chemical properties of the CNCs and LNPs were assessed. The resulting nanostructured materials were characterized by using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that the two methodologies applied resulted in both CNCs and LNPs. However, the bleaching-based treatment produced CNCs with a rod-like shape, length of 100-300 nm and width in the range of 10-30 nm, and higher purity than those obtained with ILs that were spherical in shape. In contrast, regarding lignin, IL made it possible to obtain spherical nanoparticles, as in the case of the other treatment, but they were characterized by higher purity and thermal stability. In conclusion, this research highlights the possibility of obtaining nanostructured biopolymers from an invasive aquatic species that is largely available in nature and how it is possible, by modifying experimental procedures, to obtain nanomaterials with different morphological, purity, and thermal resistance characteristics.

2.
Polymers (Basel) ; 16(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38475261

ABSTRACT

Carbon/Phenolic Composites (CPCs) are essential to manufacture many portions of the nozzle assembly of Solid Rocket Motors (SRMs) which are essential both to preserve the independent access to space as well as for the homeland security. In our research, a feasible approach aimed at preliminary retrieving the in-plane and out-plane thermal diffusivity of CPCs through the Oxy-Acetylene Torch (OAT) tests was validated. The proposed approach showed to be effective and able to bypass some limitations of common protocols, especially in terms of capability to determine the thermal diffusivity of CPCs at high heating rates. A comprehensive work of comparison of the obtained data with state-of-the-art CPCs such as MX-4926 and FM-5014 has also been carried out, evidencing the effectiveness of the proposed method.

3.
Int J Biol Macromol ; 223(Pt A): 684-701, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36356880

ABSTRACT

The efficacy of polylactic acid (PLA)/Magnesium (Mg)-based materials for driving stem cells toward bone tissue engineering applications requires specific Mg surface properties to modulate the interface of stem cells with the film. Here, we have developed novel PLA/Mg-based composites and explored their osteogenic differentiation potential on human adipose stem cells (hASCs). Mg-particles/polymer interface was improved by two treatments: heating in oxidative atmosphere (TT) and surface modification with a compatibilizer (PEI). Different contents of Mg particles were dispersed in PLA and composite surface and bulk properties, protein adsorption, stem cell-PLA/Mg interactions, osteogenic markers expressions, and lipids composition profile were evaluated. Mg particles were uniformly distributed on the surface and in the bulk PLA polymer. Improved and modulated particle-polymer adhesion was observed in Mg particle-treated composites. After 21 days in canonical growth culture conditions, hASCs on PLA/MgTT displayed the highest expression of the general osteogenic markers, RUNX2, SSP1, and BGLAP genes, Alkaline Phosphatase, type I Collagen, Osteopontin, and Calcium deposits. Moreover, by LC/MS QTOF mass-spectrophotometry lipidomic analysis, we found in PLA/MgTT-cells, for the first time, a remodeling of the lipid classes composition associated with the osteogenic differentiation. We ascribed these results to MgTT characteristics, which improve Mg availability and composite osteoinductive performance.


Subject(s)
Magnesium , Osteogenesis , Humans , Magnesium/pharmacology , Cells, Cultured , Cell Proliferation , Polyesters/pharmacology , Cell Differentiation , Stem Cells , Polymers , Antigens, Differentiation , Adipose Tissue
4.
Polymers (Basel) ; 11(12)2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31847354

ABSTRACT

Poly(ether ether ketone) (PEEK)-based nanocomposites have been realized with incorporation (0-30 wt %) of anhydrous calcium terephthalate salts (CATAS), synthetized by reaction of terephtalic acid with the metal (Ca) oxide, by means of a melt processing. Their structure, morphology, thermal, and mechanical properties have been investigated. Scanning electron microscopy observations confirmed homogeneous dispersion of nanometer-sized fillers and a toughened fracture morphology even at the higher content, while thermal characterization confirmed an unvaried thermal stability and unmodified crystalline structure of the reference PEEK matrix. A negligible nucleating effect was evidenced, while a blocking effect of the amorphous phase fraction provide composites with increased stiffness, confirmed by enhanced values of G' and shifts of glass transition peak to higher temperatures, for restriction in chain mobility imposed by CATAS. The proposed solutions aimed to enlarge the application range of high performance costly PEEK-based composites, by using thermally stable nanofillers with limited costs and easily controllable synthesis phase.

5.
Sensors (Basel) ; 19(9)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086005

ABSTRACT

Ablative materials are used extensively in the aerospace industry for protection against high thermal stresses and temperatures, an example being glass/silicone composites. The extreme conditions faced and the cost-risk related to the production/operating stage of such high-tech materials indicate the importance of detecting any anomaly or defect arising from the manufacturing process. In this paper, two different non-destructive testing techniques, namely active thermography and ultrasonic testing, have been used to detect a delamination in a glass/silicone composite. It is shown that a frequency modulated chirp signal and pulse-compression can successfully be used in active thermography for detecting such a delamination. Moreover, the same type of input signal and post-processing can be used to generate an image using air-coupled ultrasound, and an interesting comparison between the two can be made to further characterise the defect.

6.
Sensors (Basel) ; 18(3)2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29522498

ABSTRACT

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.

7.
Polymers (Basel) ; 10(2)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-30966176

ABSTRACT

Current knowledge indicates that the molecular cross-talk between stem cells and biomaterials guides the stem cells' fate within a tissue engineering system. In this work, we have explored the effects of the interaction between the poly(l-lactide) acid (PLLA) polymer film and human adult adipose stem cells (hASCs), focusing on the events correlating the materials' surface characteristics and the cells' plasma membrane. hASCs were seeded on films of pristine PLLA polymer and on a PLLA surface modified by the radiofrequency plasma method under oxygen flow (PLLA+O2). Comparative experiments were performed using human bone-marrow mesenchymal stem cells (hBM-MSCs) and human umbilical matrix stem cells (hUCMSCs). After treatment with oxygen-plasma, the surface of PLLA films became hydrophilic, whereas the bulk properties were not affected. hASCs cultured on pristine PLLA polymer films acquired a spheroid conformation. On the contrary, hASCs seeded on PLLA+O2 film surface maintained the fibroblast-like morphology typically observed on tissue culture polystyrene. This suggests that the surface hydrophilicity is involved in the acquisition of the spheroid conformation. Noteworthy, the oxygen treatment had no effects on hBM-MSC and hUCMSC cultures and both stem cells maintained the same shape observed on PLLA films. This different behavior suggests that the biomaterial-interaction is stem cell specific.

8.
J Biomed Mater Res B Appl Biomater ; 102(2): 384-94, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24000235

ABSTRACT

The aim of this study was to investigate the mechanical behavior of a dental system built up with fiber-reinforced composite (FRC) endodontic posts with different types of fibers and two cements (the first one used with a primer, the second one without it). Six FRC posts were used. Each system was characterized in terms of structural efficiency under external applied loads similar to masticatory forces. An oblique force was applied and stiffness and maximum load data were obtained. The same test was used for the dentine. The systems were analyzed by scanning electron microscope (SEM) to investigate the surface of the post and inner surface of root canal after failure. The mechanical tests showed that load values in dental systems depend on the post material and used cement. The highest load (281 ± 59 N) was observed for the conical glass fiber posts in the cement without primer. There was a 50 and 85% increase in the maximum load for two of the conical posts with glass fibers and a 229% increase for the carbon fiber posts in the cement without primer as compared with the cement with primer. Moreover, almost all the studied systems showed fracture resistances higher than the typical masticatory loads. The microscopic analysis underlined the good adhesion of the second cement at the interfaces between dentine and post. The mechanical tests confirmed that the strength of the dental systems subjected to masticatory loads was strictly related to the bond at the interface post/cement and cement/dentine.


Subject(s)
Acrylic Resins/chemistry , Composite Resins/chemistry , Dental Cements/chemistry , Dental Restoration, Permanent , Materials Testing , Models, Biological , Polyurethanes/chemistry , Root Canal Filling Materials/chemistry , Humans , Stress, Mechanical , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...