Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 167(1-3): 1231-6, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19286311

ABSTRACT

Bioleaching studies of spent petroleum catalyst were carried out using sulfur oxidizing, Acidithiobacillus species. Leaching studies were carried out in two-stage, in the first stage bacteria were grown and culture filtrate was used in the second stage for leaching purpose. XRD analysis of spent petroleum catalyst showed oxides of V, Fe and Al and sulfides of Mo and Ni. The leaching kinetics followed dual rate, initial faster followed by slower rate and equilibrium could be achieved within 7 days. The leaching rate of Ni and V were high compared to Mo. The low Mo leaching rate may be either due to formation of impervious sulfur layer or refractoriness of sulfides or both. The leaching kinetics followed 1st order rate. Using leaching kinetics, rate equations for dissolution process for different metal ions were evaluated. The rate determining step observed to be pore diffusion controlled.


Subject(s)
Acidithiobacillus/metabolism , Biodegradation, Environmental , Petroleum , Sulfur/metabolism , Catalysis , Kinetics , Metals, Heavy , Water Pollutants, Chemical/metabolism
2.
Article in English | MEDLINE | ID: mdl-20183517

ABSTRACT

A novel process was developed using sulfur-oxidizing bacteria to extract metal values like Ni, V and Mo from spent petroleum catalyst. Bacteria were grown in elemental sulfur media for five day and after filtering, the filtrate was used for leaching purpose. Effect of different parameters such as contact time, particle size, pulp density and lixiviant composition were studied to find out the extent of metal leaching during the leaching process. XRD analysis proved the existence of V in oxide form, Ni in sulfide form, Mo both in oxide as well as sulfide forms, and sulfur in elemental state only. In all the cases studied Ni and V showed higher leaching efficiency compared to Mo. The low Mo leaching rate may be either due to formation of impervious sulfur layer or refractoriness of sulfides or both. Leaching kinetics followed dual rate, initial faster followed by slower. Dissolution mechanism was explained on the basis of both surface and pore diffusion rate. The leaching kinetics followed 1st order reaction rate. Finally, multiple linear regression analysis was carried out to compare the observed and calculated leaching percentage values for three metals.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Environmental Pollution/prevention & control , Metals, Heavy/isolation & purification , Petroleum/analysis , Waste Products/analysis , Chemical Industry , Kinetics , Korea , Linear Models , Metals, Heavy/chemistry , Oxidation-Reduction , Sulfur/metabolism , X-Ray Diffraction
3.
J Hazard Mater ; 152(3): 1082-91, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-17825485

ABSTRACT

Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Catalysis , Kinetics , Temperature , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...