Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Neurosci Adv ; 8: 23982128231223579, 2024.
Article in English | MEDLINE | ID: mdl-38298523

ABSTRACT

The modulation of synaptic efficacy by group I metabotropic glutamate receptors is dysregulated in several neurodevelopmental and neurodegenerative disorders impacting cognitive function. The progression and severity of these and other disorders are affected by biological sex, and differences in metabotropic glutamate receptor signalling have been implicated in this effect. In this study, we have examined whether there are any sex-dependent differences in a form of long-term depression of synaptic responses that is triggered by application of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG). We studied DHPG-induced long-term depression at the Schaffer collateral-commissural pathway in area CA1 of hippocampal slices prepared from three separate age groups of Sprague Dawley rats. In both juvenile (2-week-old) and young adult (3-month-old) rats, there were no differences between sexes in the magnitude of long-term depression. However, in older adult (>1-year-old) rats, DHPG-induced long-term depression was greater in males. In contrast, there were no differences between sexes with respect to basal synaptic transmission or paired-pulse facilitation in any age group. The specific enhancement of metabotropic glutamate receptor-dependent long-term depression in older adult males, but not females, reinforces the importance of considering sex as a factor in the study and treatment of brain disorders.

2.
Front Synaptic Neurosci ; 14: 857675, 2022.
Article in English | MEDLINE | ID: mdl-35615440

ABSTRACT

In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown. We investigated the expression mechanisms of mGluR-LTD using either a low (30 µM) or a high (100 µM) concentration of (RS)-DHPG. We found that 30 µM DHPG generated presynaptic LTD that required the co-activation of NMDA receptors, whereas 100 µM DHPG resulted in postsynaptic LTD that was independent of the activation of NMDA receptors. We found that both forms of LTD occur at the same synapses and that these may constitute the population with the lowest basal P(r). Our results reveal an unexpected complexity to mGluR-mediated synaptic plasticity in the hippocampus.

3.
Neurosci Biobehav Rev ; 135: 104541, 2022 04.
Article in English | MEDLINE | ID: mdl-35063495

ABSTRACT

Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are neurodegenerative disorders characterized by progressive structural and functional loss of specific neuronal populations, protein aggregation, an insidious adult onset, and chronic progression. Modeling AD, PD, and HD in animal models is useful for studying the relationship between neuronal dysfunction and abnormal behaviours. Animal models are also excellent tools to test therapeutic approaches. Numerous genetic and toxin-induced models have been generated to replicate these neurodegenerative disorders. These differ in the genetic manipulation employed or the toxin used and the brain region lesioned, and in the extent to which they mimic the neuropathological and behavioral deficits seen in the corresponding human condition. Each model exhibits unique advantages and drawbacks. Here we present a comprehensive overview of the numerous AD, PD, and HD animal models currently available, with a focus on their utilities and limitations. Differences among models might underlie some of the discrepancies encountered in the literature and should be taken into consideration when designing new studies and testing putative therapies.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Parkinson Disease , Animals , Brain , Disease Models, Animal , Humans , Huntington Disease/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...