Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.259
Filter
2.
BMC Biomed Eng ; 6(1): 5, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822389

ABSTRACT

BACKGROUND: Visualization of cancer during breast conserving surgery (BCS) remains challenging; the BCS reoperation rate is reported to be 20-70% of patients. An urgent clinical need exists for real-time intraoperative visualization of breast carcinomas during BCS. We previously demonstrated the ability of a prototype imaging device to identify breast carcinoma in excised surgical specimens following 5-aminolevulinic acid (5-ALA) administration. However, this prototype device was not designed to image the surgical cavity for remaining carcinoma after the excised lumpectomy specimen is removed. A new handheld fluorescence (FL) imaging prototype device, designed to image both excised specimens and within the surgical cavity, was assessed in a clinical trial to evaluate its clinical utility for first-in-human, real-time intraoperative imaging during index BCS. RESULTS: The imaging device combines consumer-grade imaging sensory technology with miniature light-emitting diodes (LEDs) and multiband optical filtering to capture high-resolution white light (WL) and FL digital images and videos. The technology allows for visualization of protoporphyrin IX (PpIX), which fluoresces red when excited by violet-blue light. To date, n = 17 patients have received 20 mg kg bodyweight (BW) 5-ALA orally 2-4 h before imaging to facilitate the accumulation of PpIX within tumour cells. Tissue types were identified based on their colour appearance. Breast tumours in sectioned lumpectomies appeared red, which contrasted against the green connective tissues and orange-brown adipose tissues. In addition, ductal carcinoma in situ (DCIS) that was missed during intraoperative standard of care was identified at the surgical margin at <1 mm depth. In addition, artifacts due to the surgical drape, illumination, and blood within the surgical cavity were discovered. CONCLUSIONS: This study has demonstrated the detection of a grossly occult positive margin intraoperatively. Artifacts from imaging within the surgical cavity have been identified, and potential mitigations have been proposed. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01837225 (Trial start date is September 2010. It was registered to ClinicalTrials.gov retrospectively on April 23, 2013, then later updated on April 9, 2020, to reflect the introduction of the new imaging device.).

3.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854043

ABSTRACT

Background: Bone fracture is one of the most globally prevalent injuries, with an estimated 189 million bone fractures occurring annually. Delayed union or nonunion occurs in up to 15% of fractures and involves the interruption or complete failure of bone continuity following fracture. Preclinical testing is essential to support the translation of novel strategies to promote improved fracture repair treatment, but there is a paucity of small animal models that recapitulate clinical attributes associated with delayed fracture healing. This study explores whether the Zmpste24 -/- (Z24 -/- ) knockout mouse model of Hutchinson-Gilford progeria syndrome presents with delayed fracture healing. Leveraging the previously characterized Z24 -/- phenotype of genomic instability, epigenetic changes, and fragility, we hypothesize that these underlying alterations will lead to significantly delayed fracture healing relative to age-matched wild type (WT) controls. Methods: WT and Z24 -/- mice received intramedullary fixed tibia fractures at ∼12 weeks of age. Mice were sacrificed throughout the time course of repair for the collection of organs that would provide information regarding the local (fracture callus, bone marrow, inguinal lymph nodes) versus peripheral (peripheral blood, contralateral tibia, abdominal organs) tissue microenvironments. Analyses of these specimens include histomorphometry, µCT, mechanical strength testing, protein quantification, gene expression analysis, flow cytometry for cellular senescence, and immunophenotyping. Results: Z24 -/- mice demonstrated a significantly delayed rate of healing compared to WT mice with consistently smaller fracture calli containing higher proportion of cartilage and less bone after injury. Cellular senescence and pro-inflammatory cytokines were elevated in the Z24 -/- mice before and after fracture. These mice further presented with a dysregulated immune system, exhibiting generally decreased lymphopoiesis and increased myelopoiesis locally in the bone marrow, with more naïve and less memory T cell but greater myeloid activation systemically in the peripheral blood. Surprisingly, the ipsilateral lymph nodes had increased T cell activation and other pro-inflammatory NK and myeloid cells, suggesting that elevated myeloid abundance and activation contributes to an injury-specific hyperactivation of T cells. Conclusion: Taken together, these data establish the Z24 -/- progeria mouse as a model of delayed fracture healing that exhibits decreased bone in the fracture callus, with weaker overall bone quality, immune dysregulation, and increased cellular senescence. Based on this mechanism for delayed healing, we propose this Z24 -/- progeria mouse model could be useful in testing novel therapeutics that could address delayed healing. The Translational Potential of this Article: This study employs a novel animal model for delayed fracture healing that researchers can use to screen fracture healing therapeutics to address the globally prevalent issue of aberrant fracture healing.

4.
Virus Res ; 346: 199399, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38823688

ABSTRACT

Coronaviruses have caused three severe epidemics since the start of the 21st century: SARS, MERS and COVID-19. The severity of the ongoing COVID-19 pandemic and increasing likelihood of future coronavirus outbreaks motivates greater understanding of factors leading to severe coronavirus disease. We screened ten strains from the Collaborative Cross mouse genetic reference panel and identified strains CC006/TauUnc (CC006) and CC044/Unc (CC044) as coronavirus-susceptible and resistant, respectively, as indicated by variable weight loss and lung congestion scores four days post-infection. We generated a genetic mapping population of 755 CC006xCC044 F2 mice and exposed the mice to one of three genetically distinct mouse-adapted coronaviruses: clade 1a SARS-CoV MA15 (n=391), clade 1b SARS-CoV-2 MA10 (n=274), and clade 2 HKU3-CoV MA (n=90). Quantitative trait loci (QTL) mapping in SARS-CoV MA15- and SARS-CoV-2 MA10-infected F2 mice identified genetic loci associated with disease severity. Specifically, we identified seven loci associated with variation in outcome following infection with either virus, including one, HrS43, that is present in both groups. Three of these QTL, including HrS43, were also associated with HKU3-CoV MA outcome. HrS43 overlaps with a QTL previously reported by our lab that is associated with SARS-CoV MA15 outcome in CC011xCC074 F2 mice and is also syntenic with a human chromosomal region associated with severe COVID-19 outcomes in humans GWAS. The results reported here provide: (a) additional support for the involvement of this locus in SARS-CoV MA15 infection, (b) the first conclusive evidence that this locus is associated with susceptibility across the Sarbecovirus subgenus, and (c) demonstration of the relevance of mouse models in the study of coronavirus disease susceptibility in humans.

5.
Sci Adv ; 10(24): eadi1379, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865463

ABSTRACT

The recommended COVID-19 booster vaccine uptake is low. At-home lateral flow assay (LFA) antigen tests are widely accepted for detecting infection during the pandemic. Here, we present the feasibility and potential benefits of using LFA-based antibody tests as a means for individuals to detect inadequate immunity and make informed decisions about COVID-19 booster immunization. In a health care provider cohort, we investigated the changes in the breadth and depth of humoral and T cell immune responses following mRNA vaccination and boosting in LFA-positive and LFA-negative antibody groups. We show that negative LFA antibody tests closely reflect the lack of functional humoral immunity observed in a battery of sophisticated immune assays, while positive results do not necessarily reflect adequate immunity. After booster vaccination, both groups gain depth and breadth of systemic antibodies against evolving SARS-CoV-2 and related viruses. Our findings show that LFA-based antibody tests can alert individuals about inadequate immunity against COVID-19, thereby increasing booster shots and promoting herd immunity.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Point-of-Care Testing , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/diagnosis , COVID-19/prevention & control , Antibodies, Viral/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Immunization, Secondary , Female , Cohort Studies , Adult , Male , Immunity, Humoral , Middle Aged , T-Lymphocytes/immunology
6.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776389

ABSTRACT

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Subject(s)
Antiviral Agents , Prodrugs , SARS-CoV-2 , Animals , SARS-CoV-2/drug effects , Prodrugs/pharmacology , Prodrugs/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Mice , Administration, Oral , Chlorocebus aethiops , Vero Cells , COVID-19 Drug Treatment , COVID-19/virology , Virus Replication/drug effects , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleosides/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Disease Models, Animal
7.
Article in English | MEDLINE | ID: mdl-38724727

ABSTRACT

While it is widely accepted that the single gaze of another person elicits shifts of attention, there is limited work on the effects of multiple gazes on attention, despite real-world social cues often occurring in groups. Further, less is known regarding the role of unequal reliability of varying social and nonsocial information on attention. We addressed these gaps by employing a variant of the gaze cueing paradigm, simultaneously presenting participants with three faces. Block-wise, we manipulated whether one face (Identity condition) or one location (Location condition) contained a gaze cue entirely predictive of target location; all other cues were uninformative. Across trials, we manipulated the number of valid cues (number of faces gazing at target). We examined whether these two types of information (Identity vs. Location) were learned at a similar rate by statistically modelling cueing effects by trial count. Preregistered analyses returned no evidence for an interaction between condition, number of valid faces, and presence of the predictive element, indicating type of information did not affect participants' ability to employ the predictive element to alter behaviour. Exploratory analyses demonstrated (i) response times (RT) decreased faster across trials for the Identity compared with Location condition, with greater decreases when the predictive element was present versus absent, (ii) RTs decreased across trials for the Location condition only when it was completed first, and (iii) social competence altered RTs across conditions and trial number. Our work demonstrates a nuanced relationship between cue utility, condition type, and social competence on group cueing.

8.
Heart Rhythm ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797310

ABSTRACT

BACKGROUND: Peridevice leak (PDL) following left atrial appendage closure (LAAC) portends adverse outcomes. OBJECTIVE: To assess the incidence, predictors, clinical implications, and temporal evolution of PDL following LAAC. METHODS: This single-center retrospective study included all patients who underwent LAAC with Watchman FLX and had no PDL detected at implant. The primary endpoint was incidence of new PDL at initial imaging. The composite secondary endpoint included continued oral anticoagulation after initial imaging, device-related thrombus, stroke or transient ischemic attack, major bleeding, and need for PDL closure at longest follow-up. Temporal evolution of PDL was assessed in patients with available surveillance imaging. RESULTS: Among 355 patients who completed imaging at 47 (IQR 6) days, 139 (39%) had a new PDL with a mean leak size of 3.2±1.4 [median 3.0 (IQR 2.0), and range 1.0-9.0 mm]. Multiple deployment attempts and larger device size were positive predictors of PDL, while increased contrast volume administration was a negative predictor of PDL. The composite secondary endpoint occurred in 42 (30%) and 33 (15%) patients with and without PDL respectively (p<0.001). Among the 139 patients with PDL, 43 (31%) had surveillance imaging where leak size regressed from 3.7±1.8mm at 46 (IQR 7) days to 1.7±2.0mm at 189 (IQR 127) days (p<0.001). The leak size regressed in 33 (77%), remained stable in 4 (9%), and progressed in 6 (14%) cases. CONCLUSION: Despite design improvements, LAAC with Watchman FLX demonstrates significant incidence of PDL with meaningful clinical implications. Regardless of initial size, most leaks regressed over time.

9.
Nat Commun ; 15(1): 3738, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702297

ABSTRACT

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.


Subject(s)
Aluminum Hydroxide , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccines, Inactivated , Animals , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Mice , Vaccines, Inactivated/immunology , SARS-CoV-2/immunology , Aluminum Hydroxide/administration & dosage , Disease Models, Animal , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine , Antibodies, Viral/immunology , Mice, Inbred BALB C , Humans , Severe acute respiratory syndrome-related coronavirus/immunology
10.
Biodivers Data J ; 12: e120950, 2024.
Article in English | MEDLINE | ID: mdl-38808126

ABSTRACT

Background: The taxonomy of the hymenopteran parasitoid subfamily Charipinae (Hymenoptera: Cynipoidea: Figitidae) has, until recently, been in a state of chaos. While this situation has improved significantly in recent years, most of the efforts were focused on morphological data of typically old specimens. Here, we present the first integrative approach to describe the diversity of the genus Phaenoglyphis Förster, 1869 from north-western Europe. New information: For seven (of a total of 17) species, we provide DNA barcode data. Phaenoglyphisbelizini Pujade-Villar, 2018 and Phaenoglyphisevenhuisi Pujade-Villar & Paretas-Martínez, 2006 are recorded for the first time from Germany. All DNA barcodes and specimen data were added to the publicly available GBOL and BOLD reference database. The presence of a 6 bp long deletion in the CO1 barcode region that is characteristic to the genus and unique amongst Figitidae supports the monophyly of Phaenoglyphis.

11.
J Virol ; 98(5): e0190323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593045

ABSTRACT

We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.


Subject(s)
Antiviral Agents , Benzothiazoles , COVID-19 Drug Treatment , Oligopeptides , SARS-CoV-2 , Serine Proteinase Inhibitors , Virus Replication , Animals , Female , Humans , Mice , Antiviral Agents/pharmacology , Chlorocebus aethiops , COVID-19/virology , Disease Models, Animal , Lung/virology , Lung/pathology , Lung/drug effects , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Vero Cells , Virus Replication/drug effects , Oligopeptides/pharmacology , Benzothiazoles/pharmacology
12.
Mol Ther ; 32(6): 1790-1804, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38605519

ABSTRACT

The role of CD8+ T cells in SARS-CoV-2 pathogenesis or mRNA-LNP vaccine-induced protection from lethal COVID-19 is unclear. Using mouse-adapted SARS-CoV-2 virus (MA30) in C57BL/6 mice, we show that CD8+ T cells are unnecessary for the intrinsic resistance of female or the susceptibility of male mice to lethal SARS-CoV-2 infection. Also, mice immunized with a di-proline prefusion-stabilized full-length SARS-CoV-2 Spike (S-2P) mRNA-LNP vaccine, which induces Spike-specific antibodies and CD8+ T cells specific for the Spike-derived VNFNFNGL peptide, are protected from SARS-CoV-2 infection-induced lethality and weight loss, while mice vaccinated with mRNA-LNPs encoding only VNFNFNGL are protected from lethality but not weight loss. CD8+ T cell depletion ablates protection in VNFNFNGL but not in S-2P mRNA-LNP-vaccinated mice. Therefore, mRNA-LNP vaccine-induced CD8+ T cells are dispensable when protective antibodies are present but essential for survival in their absence. Hence, vaccine-induced CD8+ T cells may be critical to protect against SARS-CoV-2 variants that mutate epitopes targeted by protective antibodies.


Subject(s)
Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology , Male , Antibodies, Viral/immunology , Mice, Inbred C57BL , Humans , Disease Models, Animal
13.
Cell Rep ; 43(4): 114076, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607917

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3' end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/transmission , Virus Replication , Mutation/genetics , Respiratory Mucosa/virology , Genetic Fitness , Animals , Epithelial Cells/virology , Chlorocebus aethiops , Adaptation, Physiological/genetics , Vero Cells
14.
Sci Data ; 11(1): 328, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565538

ABSTRACT

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Subject(s)
Multiomics , Virus Diseases , Viruses , Animals , Humans , Mice , Gene Expression Profiling/methods , Metabolomics , Proteomics/methods , Virus Diseases/immunology , Host-Pathogen Interactions
15.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38558973

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.

16.
Article in English | MEDLINE | ID: mdl-38626921

ABSTRACT

Intraprocedural multimodality imaging, combining TEE with CT-fluoro fusion and ICE, can promote TTVR procedural success by improved guidance of critical steps of the device implantation.

17.
Res Sq ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562718

ABSTRACT

CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our In vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.

18.
Cell Rep ; 43(5): 114127, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38652660

ABSTRACT

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.


Subject(s)
Ebolavirus , Genetic Predisposition to Disease , Hemorrhagic Fever, Ebola , Quantitative Trait Loci , Animals , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/pathology , Quantitative Trait Loci/genetics , Ebolavirus/pathogenicity , Ebolavirus/genetics , Mice , Mice, Knockout , Chromosome Mapping , Liver/pathology , Liver/metabolism , Humans , Mice, Inbred C57BL , Female , Male
19.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38545622

ABSTRACT

We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS: ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.

20.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496546

ABSTRACT

CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...