Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 177: 35-44, 2018 12.
Article in English | MEDLINE | ID: mdl-30053442

ABSTRACT

The cornea relies on its organised extracellular matrix for maintaining transparency and biomechanical strength. Studies have identified an elastic fibre system within the human posterior cornea, thought to allow for slight deformations in response to internal pressure fluctuations within the eye. However, the type of elastic fibres that exist within the cornea and their roles remain elusive. The aim of this study was to compare the distribution and organisation of the elastic fibres within the posterior peripheral mouse and human cornea, and elucidate how these fibres integrate with the trabecular meshwork, whilst characterising the distribution of their main likely components (fibrillin-1, elastin and type VI collagen) in different parts of the cornea and adjacent sclera. We identified key differences in the elastic fibre system between the human and mouse cornea. True elastic fibres (containing elastin) were identified within the human posterior peripheral cornea. Elastic fibres appeared to present as an extensive network throughout the mouse corneal stroma, but as fibrillin-rich microfibril bundles rather than true elastic fibres. However, tropoelastin staining indicated the possibility that true elastic fibres had yet to develop in the young mice studied. Differences were also apparent within the anatomy of the trabecular meshwork. The human trabecular meshwork appeared to insert between the corneal stroma and Descemet's membrane, with elastic fibres continuing into the stroma from the trabecular meshwork anterior to Descemet's membrane. Within the mouse cornea, no clear insertion point of the trabecular meshwork was seen, instead the elastic fibres within the trabecular meshwork continued into Descemet's membrane, with the trabecular meshwork joining posterior to Descemet's membrane.


Subject(s)
Cornea/anatomy & histology , Elastic Tissue/anatomy & histology , Adult , Aged , Animals , Corneal Stroma/anatomy & histology , Descemet Membrane/anatomy & histology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Trabecular Meshwork/anatomy & histology
2.
Int J Mol Sci ; 19(7)2018 06 30.
Article in English | MEDLINE | ID: mdl-29966376

ABSTRACT

The osteocyte network inside the bone matrix is of functional importance and osteocyte cell death is a characteristic feature of pathological bone diseases. Osteocytes have emerged as key regulators of bone tissue maintenance, yet maintaining their phenotype during in vitro culture remains challenging. A 3D co-culture system for osteocytes with osteoblasts was recently presented, enabling the determination of more physiological effects of growth factors on cells in vitro. MLO-Y4 cells were embedded within a type I collagen gel and cultured in the presence of surface MG-63 cells. Co-culture was performed in the presence or absence of TGFß3. Gene expression by quantitative PCR, protein expression by fluorescent immunohistochemistry and cell viability tests were performed. The 3D co-culture induced cell differentiation of MG-63 cells seen by increased type I collagen and osteocalcin mRNA expression. TGFβ3 maintained osteocyte differentiation of MLO-Y4 cells during co-culture as determined by stable E11 and osteocalcin mRNA expression till day 4. Interestingly, most of the effects of TGFß3 on co-cultured cells were serum-dependent. Also, TGFß3 reduced cell death of 3D co-cultured MLO-Y4 cells in a serum-dependent manner. This study shows that 3D co-culture upregulates differentiation of MG-63 cells to a more mature osteoblast-like phenotype; while the addition of TGFß3 maintained the characteristic MLO-Y4 osteocyte-like phenotype and viability in a serum-dependent manner.


Subject(s)
Coculture Techniques/methods , Osteoblasts/drug effects , Osteoblasts/metabolism , Transforming Growth Factor beta/pharmacology , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Osteocytes/drug effects , Osteocytes/metabolism
3.
Article in English | MEDLINE | ID: mdl-25538684

ABSTRACT

Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte-osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000-4500 µÎµ cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte-osteoblast co-culture model that may be useful for investigating mechanically induced osteocyte control of osteoblast bone formation.

4.
Eur Spine J ; 17(1): 2-19, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17632738

ABSTRACT

Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material.


Subject(s)
Disease Models, Animal , Intervertebral Disc Displacement/physiopathology , Intervertebral Disc/growth & development , Age Factors , Animals , Humans , Intervertebral Disc/anatomy & histology , Intervertebral Disc/physiology , Intervertebral Disc Displacement/etiology , Species Specificity , Weight-Bearing/physiology
5.
J Anat ; 211(3): 325-34, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17848160

ABSTRACT

Injury to the energy-storing superficial digital flexor tendon is common in equine athletes and is age-related. Tenocytes in the superficial digital flexor tendon of adult horses appear to have limited ability to respond adaptively to exercise or prevent the accumulation of strain-induced microdamage. It has been suggested that conditioning exercise should be introduced during the growth period, when tenocytes may be more responsive to increased quantities or intensities of mechanical strain. Tenocytes are linked into networks by gap junctions that allow coordination of synthetic activity and facilitate strain-induced collagen synthesis. We hypothesised that there are reductions in cellular expression of the gap junction proteins connexin (Cx) 43 and 32 during maturation and ageing of the superficial digital flexor tendon that do not occur in the non-injury-prone common digital extensor tendon. Cryosections from the superficial digital flexor tendon and common digital extensor tendon of 5 fetuses, 5 foals (1-6 months), 5 young adults (2-7 years) and 5 old horses (18-33 years) were immunofluorescently labelled and quantitative confocal laser microscopy was performed. Expression of Cx43 and Cx32 protein per tenocyte was significantly higher in the fetal group compared with all other age groups in both tendons. The density of tenocytes was found to be highest in immature tissue. Higher levels of cellularity and connexin protein expression in immature tendons are likely to relate to requirements for tissue remodelling and growth. However, if further studies demonstrate that this correlates with greater gap junctional communication efficiency and synthetic responsiveness to mechanical strain in immature compared with adult tendons, it could support the concept of early introduction of controlled exercise as a means of increasing resistance to later injury.


Subject(s)
Aging/physiology , Connexins/analysis , Horses/physiology , Physical Conditioning, Animal , Tendons/metabolism , Animals , Cell Count , Connexin 43/analysis , Fluorescent Antibody Technique , Forelimb , Microscopy, Confocal , Stress, Mechanical , Tendons/cytology , Tendons/growth & development , Gap Junction beta-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...