Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 66(4): 906-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24061344

ABSTRACT

The effects of viral lysis and heterotrophic nanoflagellate grazing (top down forces) on prokaryotic mortality and their subsequent impact on their metabolism were estimated in the upper euphotic and deeper aphotic depth of 11 freshwater lakes located in the French Massif Central. The standing stocks of viruses (VA) and heterotrophic nanoflagellate (HNF) varied significantly (p < 0.05) with sampled depth. VA was substantially (twofold on an average) and significantly higher (p < 0.03) at the aphotic compared to euphotic depth, whereas the reverse was true (p < 0.02) for HNF. Among the prokaryote subgroup, high nucleic acid content prokaryotes explained for significant variability in the total VA and served as principle host target for viral proliferation. Like standing stocks, flagellate grazing and viral infection rates also followed similar patterns. In the investigated lakes, the mechanism for regulating prokaryotic production varied with sampled depth from grazing control in the euphotic to control due to viral lysis in the aphotic. We also tested the hypothesis of top down control on prokaryotic growth efficiency (PGE, which we used as an index of prokaryotic physiological and energetic status at the community level) at both depths. Overall, among the studied lakes, PGE varied widely (4-51 %) with significantly (p < 0.05) lower values in the aphotic (mean = 18 ± 4 %) than euphotic depth (mean = 32 ± 9 %). Contrasting observations on the top down control of PGE between sampled depths were observed. The presence of grazers was found to stimulate PGE at the euphotic, whereas viruses through their lytic infection had a strong negative impact on PGE at the aphotic depth. Such observed differences in PGE and the mechanism controlling prokaryotic production with depth could eventually have strong implication on carbon and nutrient flux patterns in the studied lakes.


Subject(s)
Ecosystem , Eukaryota/metabolism , Lakes/microbiology , Lakes/virology , Prokaryotic Cells/physiology , Prokaryotic Cells/virology , Carbon/metabolism , France , Heterotrophic Processes , Virus Physiological Phenomena , Viruses/growth & development
2.
Appl Environ Microbiol ; 77(16): 5610-8, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21724889

ABSTRACT

We explored the abundance and infection rates of viruses on a time series scale in the euphotic zone of the humic mesotrophic Lake Vassivière (Massif Central, France) and compared them to nonhumic lakes of contrasting trophy (i.e., the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat) located in the same geographical region and sampled during the same period. In Lake Vassivière, the abundances of virus-like particles (range, 1.7 × 10(10) to 2.6 × 10(10) liter(-1)) were significantly (P < 0.001) lower than in Lakes Pavin and Aydat. The percentage of virus-infected prokaryotic cells (mean, 18.0%) was significantly higher (P < 0.001) in Vassivière than in Pavin (mean, 11.5%) and Aydat (mean, 9.7%). In Vassivière, the abundance of prokaryotes was a good predictor (r = 0.78, P < 0.001) of the number of virus-like particles, while the potential grazing rate from heterotrophic nanoflagellates was positively correlated to the viral infection rate (r = 0.75, P < 0.001; n = 20), indicating the prevalence of cycling interactions among viruses, prokaryotes, and grazers, which is in agreement with past experiments. The absence of correlation between chlorophyll a concentrations (Chl) and viral parameters suggested that the resources for the lytic activity of viruses in Vassivière were mainly under allochthonous control, through host activity. Indeed, compilation of data obtained from several nonhumic lakes in the French Massif Central revealed that Chl was positively correlated to the abundance of virus-like particles at concentrations above 0.5 µg Chl liter(-1) and negatively at concentrations below 0.5 µg Chl liter(-1), suggesting that phytoplankton-derived resources could force prokaryotic growth to attain a certain threshold level when the host availability is sufficient to boost the proliferation of viruses. Therefore, based on the high level of lytic infection rates in Lake Vassivière, we conclude that viruses are key agents for prokaryotic mortality and could influence the food web dynamics in humic lakes, which may ultimately depend on the internal cycling of resources and, perhaps, mainly on the allochthonous inputs and the associated humic substances.


Subject(s)
Chlorophyll/chemistry , Lakes/virology , Prokaryotic Cells/virology , Viruses/growth & development , Analysis of Variance , Chlorophyll A , Eutrophication , Feeding Behavior , Food Chain , France , Heterotrophic Processes , Humic Substances , Phytoplankton/growth & development , Temperature , Virus Physiological Phenomena , Viruses/pathogenicity , Water/chemistry , Water Microbiology
3.
FEMS Microbiol Ecol ; 74(1): 83-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20608981

ABSTRACT

The ecology of viruses in shallow artificial freshwaters is poorly documented and there is no reference for sand pit lakes. We examined the seasonal abundances and infection rates of viruses in the sand pit Lake Créteil (France). Bacteria were the best predictor of viral abundance (4.0-7.8 × 10(10) viruses L(-1) ), with an average virus-to-bacteria ratio of 13.5 ± 1.9. Virus-induced bacterial mortality (range 37-86%, mean 65%) was higher than that in typical pelagic situations. This was related to high specific contact rates between viruses and bacterial hosts and high burst size (BS) estimates. Seasonal fluctuations in viruses and bacteria were rather homeostatic, although temperature was a major driver of microbial activities. Different bacterial morphotypes, i.e. 'morphopopulations', were analysed. Rod cells dominated the total (90%) and infected (89%) communities. Elongated rods were the most infected (45% of infected cells), whereas fat rods exhibited the highest BS estimates (mean=72 viruses per bacterium) due to a larger specific cell volume. We conclude that the lytic activity of viruses is high and heterogeneous for different bacterial-host phenotypes in the sand pit Lake Créteil. A theoretical exercise shows that this can exert a strong influence on the processes occurring in plankton food webs.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Fresh Water/microbiology , Fresh Water/virology , Bacteria/classification , Bacteriophages/classification , France , Fresh Water/chemistry , Lysogeny , Regression Analysis , Seasons , Temperature
4.
Microb Ecol ; 45(1): 88-96, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12469247

ABSTRACT

Bacterial growth efficiency (BGE) is an index of organic carbon passing through bacteria in an aquatic system. BGE values of natural bacterioplankton assemblages were measured in tropical estuarine and adjacent coastal waters in Goa along the southwest coast of India. The BGE values for estuarine and coastal waters were 18 (+/-7.84%) and 11 (+/-4.19%), respectively. BGE in these waters were at the lower end of what is usually found in productive systems. This may be due to the high respiration rates. Further, it was observed that grazers also influenced BGE. As BGE was positively correlated with bacterial productivity, the observed variation in BGE was attributed to bacterial productivity. BGE was inversely related to C:N ratio, indicating a close coupling between the nature of the substrates and BGE. Being system-dependent, the variations in BGE at the two locations were dynamic and were regulated by the quality of the substrates. Therefore, a constant value for BGE would lead to error in carbon budgets in these waters.


Subject(s)
Bacteria/growth & development , Carbon/metabolism , Water Supply , Carbon/analysis , Ecosystem , Environmental Monitoring , India , Nitrogen/analysis , Nitrogen/metabolism , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...