Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 35(8): 3893-902, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24453120

ABSTRACT

The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders.


Subject(s)
Endophenotypes , Rest/physiology , Adolescent , Adult , Aged , Brain , Brain Mapping , Cohort Studies , Humans , Magnetic Resonance Imaging , Middle Aged , Models, Genetic , Neural Pathways/physiology , Neuropsychological Tests , Signal Processing, Computer-Assisted , Twins, Dizygotic , Twins, Monozygotic , Young Adult
2.
Twin Res Hum Genet ; 15(3): 419-41, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22856376

ABSTRACT

Despite the significant advancements being made in the neurogenetics for mental health, the identification and validation of potential endophenotype markers of risk and resilience remain to be confirmed. The TWIN-E study (The Twin study in Wellbeing using Integrative Neuroscience of Emotion) aims to validate endophenotype markers of mental health across cognitive, brain, and autonomic measures by testing the heritability, clinical plausibility, and reliability of each of these measures in a large adult twin cohort. The specific gene and environmental mechanisms that moderate prospective links between endophenotype-phenotype markers and the final outcome of wellbeing will also be identified. TWIN-E is a national prospective study with three phases: I) baseline testing on a battery of online questionnaires and cognitive tasks, and EEG, MRI, and autonomic testing; II) 12-month follow-up testing on the online assessments; and III) randomized controlled trial of brain training. Minimum target numbers include 1,500 male/female twins (18-65 years) for the online assessments (Phase I and II), 300 twins for the EEG testing component, and 244 twins for the MRI testing component. For Phase III, each twin out of the pair will be randomized to either the treatment or waitlist control group to test the effects of brain training on mental health over a 30-day period, and to confirm the gene-environment and endophenotype contributions to treatment response. Preliminary heritability results are provided for the first 50% of the MRI subgroup (n = 142) for the grey matter volume, thickness, and surface area measures, and white matter diffuse tensor imaging fractional anisotropy.


Subject(s)
Brain/physiology , Diffusion Tensor Imaging , Emotions , Magnetic Resonance Imaging , Mental Health , Twins/genetics , Adolescent , Adult , Aged , Brain/anatomy & histology , Brain Mapping , Electroencephalography , Evoked Potentials/genetics , Female , Humans , Male , Middle Aged , Phenotype , Quantitative Trait, Heritable , Research Design , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...