Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(37): 43702-43711, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37676924

ABSTRACT

In this study, we address the significant challenge of overcoming limitations in the catalytic efficiency for the oxygen evolution reaction (OER). The current linear scaling relationships hinder the optimization of the electrocatalytic performance. To tackle this issue, we investigate the potential of designing single-atom catalysts (SACs) on Mo2CO2 MXenes for electrochemical OER using first-principles modeling simulations. By employing the Electrochemical Step Symmetry Index (ESSI) method, we assess OER intermediates to fine-tune the activity and identify the optimal SAC for Mo2CO2 MXenes. Our findings reveal that both Ag and Cu exhibit effectiveness as single atoms for enhancing OER activity on Mo2CO2 MXenes. However, among the 21 chosen transition metals (TMs) in this study, Cu stands out as the best catalyst for tweaking the overpotential (ηOER). This is due to Cu's lowest overpotential compared to other TMs, which makes it more favorable for the OER performance. On the other hand, Ag is closely aligned with ESSI = ηOER, making the tuning of its overpotential more challenging. Furthermore, we employ symbolic regression analysis to identify the significant factors that exhibit a correlation with the OER overpotential. By utilizing this approach, we derive mathematical formulas for the overpotential and identify key descriptors that affect the catalytic efficiency in the electrochemical OER on Mo2CO2 MXenes. This comprehensive investigation not only sheds light on the potential of MXenes in advanced electrocatalytic processes but also highlights the prospect of improved activity and selectivity in OER applications.

2.
J Phys Chem Lett ; 14(39): 8755-8764, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37738559

ABSTRACT

This Perspective provides an overview of recent developments in the field of 3d transition metal (TM) catalysts for different reactions, including oxygen-based reactions such as the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The spin moments of 3d TMs can be exploited to influence chemical reactions, and recent advances in this area, including the theory of chemisorption based on spin-dependent d-band centers and magnetic field effects, are discussed. The Perspective also explores the use of scaling relationships and surface magnetic moments in catalyst design as well as the effect of magnetism on chemisorption and vice versa. In addition, recent studies on the influence of a magnetic field on the ORR and the OER are presented, demonstrating the potential of ferromagnetic catalysts to enhance these reactions through spin polarization.

3.
J Phys Chem Lett ; 12(40): 9791-9799, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34596416

ABSTRACT

Adsorption energy scaling relationships have progressed beyond their original form, which was primarily focused on optimizing catalytic sites and lowering computational costs in simulations. The recent rise in interest in adsorption energy scaling relations is to investigate surfaces other than transition metals (TMs) as well as interactions involving complex compounds. In this work, we report our extensive study on the scaling relation (SR) between oxygen (O), with elements of neighboring groups such as boron (B), aluminum (Al), carbon (C), silicon (Si), nitrogen (N), phosphorus (P), and fluorine (F) on magnetic bimetallic surfaces. We observed that only O versus N and F seems to have a positive slope; the other slopes are negative. We present new theoretical model in terms of multiple surface descriptors using density functional theory and compressed sensing, whereas the original scaling theory was based on a single adsorbate descriptor: adsorbate valency.

4.
Phys Chem Chem Phys ; 22(32): 17960-17968, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32747888

ABSTRACT

The scaling relationships between the adsorption energies of different reaction intermediates have a tremendous effect in the field of surface science, particularly in predicting new catalytic materials. In the last few decades, these scaling laws have been extensively studied and interpreted by a number of research groups which makes them almost universally accepted. In this work, we report the breakdown of the standard scaling law in magnetic bimetallic transition metal (TM) surfaces for hydrogenated species of oxygen (O), carbon (C), and nitrogen (N), where the adsorption energies are estimated using density functional theory (DFT). We propose that the scaling relationships do not necessarily rely solely on the adsorbates, they can also be strongly dependent on the surface properties. For magnetic bimetallic TM surfaces, the magnetic moment plays a vital role in the estimation of adsorption energy, and therefore towards the linear scaling relation.

5.
J Phys Condens Matter ; 25(15): 155501, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23528988

ABSTRACT

The electronic structures, densities of states, Fermi surfaces and elastic properties of AB3 (A =La, Y; B =Pb, In, Tl) compounds are studied under pressure using the full-potential linear augmented plane wave (FP-LAPW) method within the local density approximation for the exchange-correlation functional and including spin-orbit coupling. Fermi surface topology changes are found for all the isostructural AB3 compounds under compression (at V/V0 = 0.90 for LaPb3 (pressure = 8 GPa), at V/V0 = 0.98 for AIn3 (pressure = 1.5 GPa), at V/V0 = 0.80 for ATl3 (pressure in excess of 18 GPa)) apart from YPb3, although its electronic structure at zero pressure is very similar to that of LaPb3. For LaPb3 a softening of the C44 elastic constant under pressure (equivalent to 8 GPa) may be related to the appearance of a new hole pocket around the X point. From the calculated elastic properties and other mechanical properties, all the compounds investigated are found to be ductile in nature with elastic anisotropy. The states at the Fermi level (EF) are dominated by B p states with significant contributions from the A d states. For the La compounds, small hybridizations of the La f states also occur around EF.

SELECTION OF CITATIONS
SEARCH DETAIL
...