Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Neurobiol ; 231: 102540, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898314

ABSTRACT

How functional amyloids are regulated to restrict their activity is poorly understood. The cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that adopts an amyloid state key for memory persistence. Its monomer represses the translation of synaptic target mRNAs while phase separated, whereas its aggregated state acts as a translational activator. Here, we have explored the sequence-driven molecular determinants behind the functional aggregation of human CPEB3 (hCPEB3). We found that the intrinsically disordered region (IDR) of hCPEB3 encodes both an amyloidogenic and a phase separation domain, separated by a poly-A-rich region. The hCPEB3 amyloid core is composed by a hydrophobic region instead of the Q-rich stretch found in the Drosophila orthologue. The hCPEB3 phase separation domain relies on hydrophobic interactions with ionic strength dependence, and its droplet ageing process leads to a liquid-to-solid transition with the formation of a non-fibril-based hydrogel surrounded by starburst droplets. Furthermore, we demonstrate the differential behavior of the protein depending on its environment. Under physiological-like conditions, hCPEB3 can establish additional electrostatic interactions with ions, increasing the stability of its liquid droplets and driving a condensation-based amyloid pathway.


Subject(s)
RNA-Binding Proteins , Humans , Amyloid/chemistry , Amyloid/metabolism , RNA-Binding Proteins/metabolism , Phase Separation
2.
Arch Biochem Biophys ; 675: 108113, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31568752

ABSTRACT

Transactive Response DNA-Binding Protein of 43 kDa (TDP-43) is an essential human protein implicated in Amyotrophic Lateral Sclerosis (ALS) and common dementias. Its C-terminal disordered region, composed of residues 264-414 includes a hydrophobic segment (residues 320-340), which drives physiological liquid/liquid phase separation and a Q/N-rich segment (residues 341-357), which is essential for pathological amyloid formation. Due to TDP-43's relevance for pathology, identifying inhibitors and characterizing their mechanism of action are important pharmacological goals. The Polyglutamine Binding Peptide 1 (QBP1), whose minimal active core is the octapeptide WGWWPGIF, strongly inhibits the aggregation of polyQ-containing amyloidogenic proteins such as Huntingtin. Rather promiscuous, this inhibitor also blocks the aggregation of other glutamine containing amyloidogenic proteins, but not Aß, and its mechanism of action remains unknown. Using a series of spectroscopic assays and biochemical tests, we establish that QBP1 binds and inhibits amyloid formation by TDP-43's Q/N-rich region. NMR spectroscopic data evince that the aromatic rings of QBP1 accept hydrogen bonds from the HN groups of the Asn and Gln to block amyloidogenesis. This mechanism of blockage may be general to polyphenol amyloid inhibitors.


Subject(s)
Amyloid/biosynthesis , DNA-Binding Proteins/antagonists & inhibitors , Oligopeptides/physiology , Amino Acid Sequence , DNA-Binding Proteins/metabolism , Fluorescence , Humans , Oligopeptides/chemistry
3.
J Med Chem ; 57(23): 9995-10012, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25409416

ABSTRACT

A series of organometallic ruthenium(II) complexes containing iminophosphorane ligands have been synthesized and characterized. Cationic compounds with chloride as counterion are soluble in water (70-100 mg/mL). Most compounds (especially highly water-soluble 2) are more cytotoxic to a number of human cancer cell lines than cisplatin. Initial mechanistic studies indicate that the cell death type for these compounds is mainly through canonical or caspase-dependent apoptosis, nondependent on p53, and that the compounds do not interact with DNA or inhibit protease cathepsin B. In vivo experiments of 2 on MDA-MB-231 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (shrinkage) of 56% after 28 days of treatment (14 doses of 5 mg/kg every other day) with low systemic toxicity. Pharmacokinetic studies showed a quick absorption of 2 in plasma with preferential accumulation in the breast tumor tissues when compared to kidney and liver, which may explain its high efficacy in vivo.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Coordination Complexes/chemical synthesis , Organometallic Compounds/chemical synthesis , Organometallic Compounds/therapeutic use , Ruthenium/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Coordination Complexes/pharmacokinetics , Coordination Complexes/therapeutic use , Female , HEK293 Cells , Humans , In Vitro Techniques , Mice, Inbred NOD , Mice, SCID , Phosphoranes/chemical synthesis , Phosphoranes/therapeutic use , Solubility , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...