Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(10): 2722-2727, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38752134

ABSTRACT

Zn2GeO4 is considered a very promising alternative to current luminescent semiconductors. Previous results suggest that its emitted wavelength may depend on different variables, such as particle size and morphology, among others. In this work, we have prepared pure and highly homogeneous Zn2GeO4 nanorods under hydrothermal synthesis conditions with a willemite-like structure. Their luminescent properties have been explored and their band gap is estimated, which are distinct from those of previously reported Zn2GeO4 bulk particles. Therefore, our results identify particle morphology as a crucial factor for maximizing and fine-tuning the luminescence of Zn2GeO4 nano-phosphors.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513065

ABSTRACT

This article focuses on the Na2O-Ga2O3-TiO2 system, which is barely explored in the study of transparent conductive oxides (TCOs). NaxGa4+xTin-4-xO2n-2 (n = 5, 6, and 7 and x ≈ 0.7-0.8) materials were characterized using neutron powder diffraction and aberration-corrected scanning transmission electron microscopy. Activation energy, as a function of different structures depending on tunnel size, shows a significant improvement in Na+ ion conduction from hexagonal to octagonal tunnels. New insights into the relationship between the crystal structure and the transport properties of TCOs, which are crucial for the design and development of new optoelectronic devices, are provided.

3.
Nanomaterials (Basel) ; 13(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37176990

ABSTRACT

The temperature-dependent luminescence properties of γ-Ga2O3 nanoparticles prepared by a precipitation method are investigated under steady-state and pulsed-light excitation. The main photoluminescence (PL) emission at room temperature consists of a single blue band centered around 2.76 eV, which hardly undergoes a blueshift of 0.03 eV when temperature goes down to 4 K. The emission behaves with a positive thermal quenching following an Arrhenius-type curve. The data fitting yields two non-radiative levels affecting the emission band with activation energies of 7 meV and 40 meV. On the other hand, time-resolved PL measurements have also been taken and studied as a function of the temperature. The data analysis has resulted in two lifetimes: one of 3.4 ns and the other of 32 ns at room temperature, which undergo an increase up to 4.5 ns and 65 ns at T = 4 K, respectively. Based on both stationary and dynamic PL results, a model of radiative and non-radiative levels associated with the main emission bands of γ-Ga2O3 is suggested. Finally, by using PL excitation measurements, an estimation of the bandgap and its variation with temperature between 4 K and room temperature were obtained and assessed against O'Donnell-Chen's law. With this variation it has been possible to calculate the average of the phonon energy, resulting in ⟨hω⟩ = 10 ± 1 meV.

4.
Nanomaterials (Basel) ; 11(4)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920148

ABSTRACT

In this work, semiconductor tin oxide (II) (SnO) nanoparticles and plates were synthesized at room conditions via a hydrolysis procedure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the high crystallinity of the as-synthesized romarchite SnO nanoparticles with dimensions ranging from 5 to 16 nm. The stability of the initial SnO and the controlled oxidation to SnO2 was studied based on either thermal treatments or controlled laser irradiation using a UV and a red laser in a confocal microscope. Thermal treatments induced the oxidation from SnO to SnO2 without formation of intermediate SnOx, as confirmed by thermodiffraction measurements, while by using UV or red laser irradiation the transition from SnO to SnO2 was controlled, assisted by formation of intermediate Sn3O4, as confirmed by Raman spectroscopy. Photoluminescence and Raman spectroscopy as a function of the laser excitation source, the laser power density, and the irradiation duration were analyzed in order to gain insights in the formation of SnO2 from SnO. Finally, a tailored spatial SnO/SnO2 micropatterning was achieved by controlled laser irradiation with potential applicability in optoelectronics and sensing devices.

5.
Nanomaterials (Basel) ; 11(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578664

ABSTRACT

Achieving nanostructures with high surface area is one of the most challenging tasks as this metric usually plays a key role in technological applications, such as energy storage, gas sensing or photocatalysis, fields in which NiO is gaining increasing attention recently. Furthermore, the advent of modern NiO-based devices can take advantage of a deeper knowledge of the doping process in NiO, and the fabrication of p-n heterojunctions. By controlling experimental conditions such as dopant concentration, reaction time, temperature or pH, NiO morphology and doping mechanisms can be modulated. In this work, undoped and Sn doped nanoparticles and NiO/SnO2 nanostructures with high surface areas were obtained as a result of Sn incorporation. We demonstrate that Sn incorporation leads to the formation of nanosticks morphology, not previously observed for undoped NiO, promoting p-n heterostructures. Consequently, a surface area value around 340 m2/g was obtained for NiO nanoparticles with 4.7 at.% of Sn, which is nearly nine times higher than that of undoped NiO. The presence of Sn with different oxidation states and variable Ni3+/Ni2+ ratio as a function of the Sn content were also verified by XPS, suggesting a combination of two charge compensation mechanisms (electronic and ionic) for the substitution of Ni2+ by Sn4+. These results make Sn doped NiO nanostructures a potential candidate for a high number of technological applications, in which implementations can be achieved in the form of NiO-SnO2 p-n heterostructures.

6.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466848

ABSTRACT

The optimization of novel transparent conductive oxides (TCOs) implies a better understanding of the role that the dopant plays on the optoelectronic properties of these materials. In this work, we perform a systematic study of the homologous series ZnkIn2Ok+3 (IZO) by characterizing the specific location of indium in the structure that leads to a nanodomain framework to release structural strain. Through a systematic study of different terms of the series, we have been able to observe the influence of the k value in the nano-structural features of this homologous series. The stabilization and visualization of the structural modulation as a function of k is discussed, even in the lowest term of the series (k = 3). The strain fields and atomic displacements in the wurtzite structure as a consequence of the introduction of In3+ are evaluated.

7.
Sci Rep ; 10(1): 5503, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32218520

ABSTRACT

Transition metal oxides potentially present higher specific capacities than the current anodes based on carbon, providing an increasing energy density as compared to commercial Li-ion batteries. However, many parameters could influence the performance of the batteries, which depend on the processing of the electrode materials leading to different surface properties, sizes or crystalline phases. In this work a comparative study of tin and titanium oxide nanoparticles synthesized by different methods, undoped or Li doped, used as single components or in mixed ratio, or alternatively forming a composite with graphene oxide have been tested demonstrating an enhancement in capacity with Li doping and better cyclability for mixed phases and composite anodes.

8.
Molecules ; 25(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041230

ABSTRACT

In this work, layered hybrid composites formed by tin oxide (SnO) nanoparticles synthesized by hydrolysis and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) have been analyzed. Prior to the composite study, both SnO and PEDOT:PSS counterparts were characterized by diverse techniques, such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), photoluminescence (PL), atomic force microscopy (AFM), optical absorption and Hall effect measurements. Special attention was given to the study of the stability of the polymer under laser illumination, as well as the analysis of the SnO to SnO2 oxidation assisted by laser irradiation, for which different laser sources and neutral filters were employed. Synergetic effects were observed in the hybrid composite, as the addition of SnO nanoparticles improves the stability and electrical conductivity of the polymer, while the polymeric matrix in which the nanoparticles are embedded hinders formation of SnO2. Finally, the Si passivation behavior of the hybrid composites was studied.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Tin Compounds/chemistry , Electric Conductivity , Microscopy, Atomic Force/methods , Microscopy, Electron, Transmission/methods
9.
Sci Rep ; 8(1): 8740, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29880895

ABSTRACT

The effects of Cr on local environment and electronic structure of rutile TiO2 are studied combining theoretical and experimental approaches. Neutral and negatively charged substitutional Cr impurities CrTi0 and CrTi1- as well as Cr-oxygen vacancy complex 2CrTi + VO are studied by the density functional theory (DFT) within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) functional. Experimental results based on X-Ray absorption spectroscopy (XAS) and X-Ray photoelectron spectroscopy (XPS) performed on Cr doped TiO2 at the Synchrotron facility were compared to the theoretical results. It is shown that the electrons of the oxygen vacancy tend to be localized at the t2g states of the Cr ions in order to reach the stable oxidation state of Cr3+. Effects of Cr on crystal field (CF) and structural distortions in the rutile TiO2 cell were analyzed by the DFT calculations and XAS spectra revealing that the CF and tetragonal distortions in TiO2 are very sensitive to the concentration of Cr.

10.
Chem Commun (Camb) ; 47(37): 10281-3, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21860849

ABSTRACT

Reported herein is the discovery of a novel family of "clicked" estradiol-based LMWGs whose gelation ability highly depends on the gelator symmetry. These LMWGs that gel different organic solvents in the presence of H(2)O even at concentrations as low as 0.04 wt% are readily accessible using "click" chemistry.


Subject(s)
Click Chemistry , Estradiol/chemistry , Gels , Models, Molecular , Molecular Conformation , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...