Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 666356, 2021.
Article in English | MEDLINE | ID: mdl-34054836

ABSTRACT

Type II interferon gamma (IFNγ) is a pleiotropic cytokine capable of modulating the innate and adaptive immune responses which has been widely characterized in several teleost families. In fish, IFNγ stimulates the expression of cytokines and chemokines associated with the pro-inflammatory response and enhances the production of nitrogen and oxygen reactive species in phagocytic cells. This work studied the effect of IFNγ on the expression of cell-surface markers on splenocytes of Atlantic salmon (Salmo salar). In vitro results showed that subpopulations of mononuclear splenocytes cultured for 15 days were capable of increasing gene expression and protein availability of cell-surface markers such as CD80/86, CD83 and MHC II, after being stimulated with recombinant IFNγ. These results were observed for subpopulations with characteristics associated with monocytes (51%), and features that could be related to lymphocytes (46.3%). In addition, a decrease in the expression of zbtb46 was detected in IFNγ-stimulated splenocytes. Finally, the expression of IFNγ and cell-surface markers was assessed in Atlantic salmon under field conditions. In vivo results showed that the expression of ifnγ increased simultaneously with the up-regulation of cd80/86, cd83 and mhcii during a natural outbreak of Piscirickettsia salmonis. Overall, the results obtained in this study allow us to propose IFNγ as a candidate molecule to stimulate the phenotypic progression of a small population of immune cells, which will increase antigen presenting cells markers. Thereby, modulatory strategies using IFNγ may generate a robust and coordinated immune response in fish against pathogens that affect aquaculture.


Subject(s)
Antigens, CD/metabolism , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Histocompatibility Antigens Class II/metabolism , Immunoglobulins/metabolism , Interferon-gamma/immunology , Membrane Glycoproteins/metabolism , Salmo salar/immunology , Spleen/immunology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , B7-1 Antigen/genetics , B7-1 Antigen/immunology , B7-2 Antigen/genetics , B7-2 Antigen/immunology , Biomarkers/metabolism , Fish Diseases/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Immunoglobulins/genetics , Immunoglobulins/immunology , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Piscirickettsia , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/veterinary , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism , CD83 Antigen
2.
Dev Comp Immunol ; 103: 103516, 2020 02.
Article in English | MEDLINE | ID: mdl-31593708

ABSTRACT

Antimicrobial peptides (AMPs) are considered to be amongst the most powerful tools for the fight against pathogens in fish, since they form part of the innate immune response, which is especially vital in eggs and early larval stages, when the immune system is developing. The fish responsible for a large part of the profits in Mediterranean aquaculture is European sea bass (Dicentrarchus labrax), a species greatly susceptible to nodavirus (NNV), especially in the larval and juvenile stages. In this work, polyclonal antibodies were developed and used to detect and quantify NK-lysin, dicentracin and hepcidin AMPs in European sea bass eggs and during larval development, as well as to evaluate their regulation in juvenile specimens upon NNV infection. Basal and detectable levels of all the AMPs studied were present in eggs, confirming the maternal transfer of peptides, which increased in one or two waves during larval development up to 69 days post-fertilization. After NNV infection, the mRNA of all the AMPs analysed was up-regulated five days after infection in most of the tissues, whilst peptide quantification of all three AMPs decreased in the brain, the target tissue for NNV, but increased in the head-kidney 5 days after infection. Further research should be carried out to ascertain the role of AMPs in fish innate immunity and to understand how NNV evades the immune response to be disseminated.


Subject(s)
Bass/immunology , Fish Diseases/immunology , Fish Proteins/immunology , Hepcidins/immunology , Proteolipids/immunology , RNA Virus Infections/veterinary , Animals , Antimicrobial Cationic Peptides/immunology , Bass/virology , Immunity, Innate/immunology , Nodaviridae , RNA Virus Infections/immunology
3.
Mol Immunol ; 87: 102-113, 2017 07.
Article in English | MEDLINE | ID: mdl-28432942

ABSTRACT

Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are efficient soluble intracellular sensors that activate defense mechanisms against pathogens. In teleost fish, the involvement of NLRs in the immune response is not well understood. However, recent work has evidenced the expression of different NLRs in response to some pathogen associated molecular patterns (PAMPs). In the present work, the cDNA sequence encoding three new NOD-like receptors were identified in Oncorhynchus mykiss, namely OmNLRC3, OmNLRC5 and OmNLRX1. Results showed that their sequences coded for proteins of 1135, 836 and 1010 amino acids, respectively. The deduced protein sequences of all receptors showed characteristic domains of this receptor family, such as leucine rich repeats and NACHT domain. Phylogenetic analysis revealed a high degree of identity with other NOD-like receptors and they are clustered into different families. Transcript expression analysis indicated that OmNLRs are constitutively expressed in liver, spleen, intestine, gill, skin and brain. OmNLR expression was upregulated in kidney and gills from rainbow trout in response to LPS. In order to give new insights into the function of these new NLR members, an in vitro model of immune stimulation was established using the rainbow trout cell line RTgill-W1. Expression analysis revealed that RTgill-W1 overexpressed proinflammatory cytokines in response to LPS and poly I:C alongside with a differential overexpression of OmNLRC3, OmNLRC5 and OmNLRX1. The expression of OmNLRC5 was further verified at the protein level by immunofluorescence. Finally, the effect of the overexpressed cytokines on the OmNLR expression by RTgill-W1 cells was assessed, suggesting a regulatory mechanism on OmNLRC3 expression. Overall, results suggest that O. mykiss NOD-like receptors could play a key role in the defense mechanisms of teleost through PAMP recognition. Future studies will focus on gills which could be related with a key sensor mucosal system in one of the most environmentally fish exposed tissues.


Subject(s)
Fish Proteins/genetics , Gene Expression Regulation/genetics , Intercellular Signaling Peptides and Proteins/genetics , Mitochondrial Proteins/genetics , NLR Proteins/genetics , Oncorhynchus mykiss/genetics , Amino Acid Sequence , Animals , Cell Line , Cytokines/genetics , Inflammation/genetics , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...