Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS One ; 19(4): e0301496, 2024.
Article in English | MEDLINE | ID: mdl-38635745

ABSTRACT

Obesity leads to insulin resistance (IR) and type 2 diabetes. In humans, low levels of the hormone prolactin (PRL) correlate with IR, adipose tissue (AT) dysfunction, and increased prevalence of T2D. In obese rats, PRL treatment promotes insulin sensitivity and reduces visceral AT adipocyte hypertrophy. Here, we tested whether elevating PRL levels with the prokinetic and antipsychotic drug sulpiride, an antagonist of dopamine D2 receptors, improves metabolism in high fat diet (HFD)-induced obese male mice. Sulpiride treatment (30 days) reduced hyperglycemia, IR, and the serum and pancreatic levels of triglycerides in obese mice, reduced visceral and subcutaneous AT adipocyte hypertrophy, normalized markers of visceral AT function (PRL receptor, Glut4, insulin receptor and Hif-1α), and increased glycogen stores in skeletal muscle. However, the effects of sulpiride reducing hyperglycemia were also observed in obese prolactin receptor null mice. We conclude that sulpiride reduces obesity-induced hyperglycemia by mechanisms that are independent of prolactin/prolactin receptor activity. These findings support the therapeutic potential of sulpiride against metabolic dysfunction in obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Humans , Mice , Male , Rats , Animals , Mice, Obese , Dopamine D2 Receptor Antagonists , Prolactin , Receptors, Prolactin , Diabetes Mellitus, Type 2/drug therapy , Sulpiride/pharmacology , Sulpiride/therapeutic use , Obesity/drug therapy , Obesity/etiology , Diet, High-Fat/adverse effects , Hyperglycemia/drug therapy , Hypertrophy , Insulin/metabolism
2.
Mol Cell ; 84(1): 20-22, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38181762

ABSTRACT

Throughout life, whether through external consumption or internal production, we are exposed to different reactive metabolites considered toxic to the body. Pham et al.1 uncover metabolic regulation by one such harmful metabolite: formaldehyde.


Subject(s)
Formaldehyde , Formaldehyde/metabolism
3.
Eye (Lond) ; 38(3): 520-528, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37673971

ABSTRACT

BACKGROUND/OBJECTIVE: The prokinetic levosulpiride elevates vasoinhibin levels in the vitreous of patients with proliferative diabetic retinopathy (PDR) suggesting clinical benefits due to the anti-vasopermeability and anti-angiogenic properties of vasoinhibin. We investigated the biological activity of levosulpiride in centre-involving diabetic macular oedema (DME). PATIENTS/METHODS: Prospective, randomized, double-blinded, dual-centre, phase 2 trial in patients with centre-involving DME orally treated with placebo (n = 17) or levosulpiride (n = 17) for 8 weeks or in patients with PDR undergoing elective pars plana vitrectomy and receiving placebo (n = 18) or levosulpiride (n = 18) orally for the 1 week before vitrectomy. RESULTS: Levosulpiride improved changes from baseline in best-corrected visual acuity (p ≤ 0.037), central foveal thickness (CFT, p ≤ 0.013), and mean macular volume (MMV, p ≤ 0.002) at weeks 4, 6, and 8 compared to placebo. At 8 weeks, the proportion of eyes gaining ≥5 ETDRS letters at 4 m (41% vs. 28%), losing ≥21 µm in CFT (55% vs. 28%), and dropping ≥0.06 mm3 in MMV (65% vs. 29%) was higher after levosulpiride than placebo. The overall grading of visual and structural parameters improved with levosulpiride (p = 0.029). Levosulpiride reduced VEGF (p = 0.025) and PlGF (p = 0.008) levels in the vitreous of PDR patients. No significant adverse side-effects were detected. CONCLUSIONS: Oral levosulpiride for 8 weeks improved visual and structural outcomes in patients with centre-involving DME by mechanisms that may include intraocular upregulation of vasoinhibin and downregulation of VEGF and PlGF. Larger clinical trials evaluating long-term efficacy and safety are warranted.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Sulpiride/analogs & derivatives , Humans , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/surgery , Vascular Endothelial Growth Factor A/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Prospective Studies , Intravitreal Injections , Angiogenesis Inhibitors
4.
Front Endocrinol (Lausanne) ; 13: 1001703, 2022.
Article in English | MEDLINE | ID: mdl-36213259

ABSTRACT

The role of prolactin (PRL) favoring metabolic homeostasis is supported by multiple preclinical and clinical studies. PRL levels are key to explaining the direction of its actions. In contrast with the negative outcomes associated with very high (>100 µg/L) and very low (<7 µg/L) PRL levels, moderately high PRL levels, both within but also above the classically considered physiological range are beneficial for metabolism and have been defined as HomeoFIT-PRL. In animal models, HomeoFIT-PRL levels counteract insulin resistance, glucose intolerance, adipose tissue hypertrophy and fatty liver; and in humans associate with reduced prevalence of insulin resistance, fatty liver, glucose intolerance, metabolic syndrome, reduced adipocyte hypertrophy, and protection from type 2 diabetes development. The beneficial actions of PRL can be explained by its positive effects on main metabolic organs including the pancreas, liver, adipose tissue, and hypothalamus. Here, we briefly review work supporting PRL as a promoter of metabolic homeostasis in rodents and humans, the PRL levels associated with metabolic protection, and the proposed mechanisms involved. Finally, we discuss the possibility of using drugs elevating PRL for the treatment of metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Glucose Intolerance , Insulin Resistance , Animals , Humans , Hypertrophy , Prolactin/metabolism
5.
J Neuroendocrinol ; 34(4): e13091, 2022 04.
Article in English | MEDLINE | ID: mdl-35078262

ABSTRACT

Excessive vasopermeability and angiogenesis compromise vision in diabetic macular oedema (DME) and diabetic retinopathy (DR). Vasoinhibin is a fragment of the hormone prolactin (PRL) that inhibits diabetes-induced retinal hypervasopermeability and ischaemia-induced retinal angiogenesis in rodents. Hyperprolactinaemia generated by the dopamine D2 receptor antagonist, levosulpiride, is associated with higher levels of vasoinhibin in the vitreous of patients with DR, implying a beneficial outcome due to vasoinhibin-mediated inhibition of retinal vascular alterations. Here, we tested whether hyperprolactinaemia induced by racemic sulpiride increases intraocular vasoinhibin levels and inhibits retinal hypervasopermeability in diabetic rats. Diabetes was generated with streptozotocin and, 4 weeks later, rats were treated for 2 weeks with sulpiride or osmotic minipumps delivering PRL. ELISA, Western blot, and Evans blue assay were used to evaluate serum PRL, retinal vasoinhibin, and retinal vasopermeability, respectively. Hyperprolactinaemia in response to sulpiride or exogenous PRL was associated with increased levels of vasoinhibin in the retina and reduced retinal hypervasopermeability. Furthermore, sulpiride decreased retinal haemorrhages in response to the intravitreal administration of vascular endothelial growth factor (VEGF). Neither sulpiride nor exogenous PRL modified blood glucose levels or bodyweight. We conclude that sulpiride-induced hyperprolactinaemia inhibits the diabetes- and VEGF-mediated increase in retinal vasopermeability by promoting the intraocular conversion of endogenous PRL to vasoinhibin. These findings support the therapeutic potential of sulpiride and its levorotatory enantiomer, levosulpiride, against DME and DR.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Hyperprolactinemia , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Humans , Hyperprolactinemia/chemically induced , Hyperprolactinemia/complications , Hyperprolactinemia/metabolism , Prolactin/metabolism , Rats , Retina/metabolism , Sulpiride/metabolism , Sulpiride/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
6.
Angiogenesis ; 25(1): 57-70, 2022 02.
Article in English | MEDLINE | ID: mdl-34097181

ABSTRACT

The hormone prolactin acquires antiangiogenic and antivasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, an endogenous prolactin fragment of 123 or more amino acids that inhibits the action of multiple proangiogenic factors. Preclinical and clinical evidence supports the therapeutic potential of vasoinhibin against angiogenesis-related diseases including diabetic retinopathy, peripartum cardiomyopathy, rheumatoid arthritis, and cancer. However, the use of vasoinhibin in the clinic has been limited by difficulties in its production. Here, we removed this barrier to using vasoinhibin as a therapeutic agent by showing that a short linear motif of just three residues (His46-Gly47-Arg48) (HGR) is the functional determinant of vasoinhibin. The HGR motif is conserved throughout evolution, its mutation led to vasoinhibin loss of function, and oligopeptides containing this sequence inhibited angiogenesis and vasopermeability with the same potency as whole vasoinhibin. Furthermore, the oral administration of an optimized cyclic retro-inverse vasoinhibin heptapeptide containing HGR inhibited melanoma tumor growth and vascularization in mice and exhibited equal or higher antiangiogenic potency than other antiangiogenic molecules currently used as anti-cancer drugs in the clinic. Finally, by unveiling the mechanism that obscures the HGR motif in prolactin, we anticipate the development of vasoinhibin-specific antibodies to solve the on-going challenge of measuring endogenous vasoinhibin levels for diagnostic and interventional purposes, the design of vasoinhibin antagonists for managing insufficient angiogenesis, and the identification of putative therapeutic proteins containing HGR.


Subject(s)
Cell Cycle Proteins , Diabetic Retinopathy , Angiogenesis Inhibitors/pharmacology , Animals , Mice , Oligopeptides/pharmacology , Prolactin
7.
Front Endocrinol (Lausanne) ; 12: 619696, 2021.
Article in English | MEDLINE | ID: mdl-33746901

ABSTRACT

Prolactin (PRL) levels are reduced in the circulation of rats with diabetes or obesity, and lower circulating levels of PRL correlate with increased prevalence of diabetes and a higher risk of metabolic alterations in the clinic. Furthermore, PRL stimulates ß-cell proliferation, survival, and insulin production and pregnant mice lacking PRL receptors in ß-cells develop gestational diabetes. To investigate the protective effect of endogenous PRL against diabetes outside pregnancy, we compared the number of cases and severity of streptozotocin (STZ)-induced hyperglycemia between C57BL/6 mice null for the PRL receptor gene (Prlr-/- ) and wild-type mice (Prlr+/+ ). STZ-treated diabetic Prlr-/- mice showed a higher number of cases and later recovery from hyperglycemia, exacerbated glucose levels, and glucose intolerance compared to the Prlr+/+ mice counterparts. Consistent with the worsening of hyperglycemia, pancreatic islet density, ß-cell number, proliferation, and survival, as well as circulating insulin levels were reduced, whereas α-cell number and pancreatic inflammation were increased in the absence of PRL signaling. Deletion of the PRL receptor did not alter the metabolic parameters in vehicle-treated animals. We conclude that PRL protects whole body glucose homeostasis by reducing ß-cell loss and pancreatic inflammation in STZ-induced diabetes. Medications elevating PRL circulating levels may prove to be beneficial in diabetes.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Experimental/genetics , Glucose Intolerance/genetics , Insulin/blood , Receptors, Prolactin/genetics , Animals , Cell Proliferation/genetics , Cell Survival/genetics , Diabetes Mellitus, Experimental/blood , Glucose Intolerance/blood , Insulin-Secreting Cells/metabolism , Mice , Receptors, Prolactin/metabolism
8.
Transl Vis Sci Technol ; 9(9): 27, 2020 08.
Article in English | MEDLINE | ID: mdl-32879783

ABSTRACT

Purpose: High circulating levels of the hormone prolactin (PRL) protect against experimental diabetic retinopathy (DR) due to the retinal accumulation of vasoinhibin, a PRL fragment that inhibits blood vessel permeability and growth. A phase 2 clinical trial is investigating a new therapy for DR based on elevating serum PRL levels with levosulpiride, a prokinetic dopamine D2 receptor blocker. Here, we tested whether levosulpiride-induced hyperprolactinemia elevates PRL and vasoinhibin in the vitreous of volunteer patients with proliferative DR (PDR) undergoing elective pars plana vitrectomy. Methods: Patients were randomized to receive placebo (lactose pill, orally TID; n = 19) or levosulpiride (25 mg orally TID; n = 18) for the 7 days before vitrectomy. Vitreous samples from untreated non-diabetic (n = 10) and PDR (n = 17) patients were also studied. Results: Levosulpiride elevated the systemic (101 ± 13 [SEM] vs. 9.2 ± 1.3 ng/mL, P < 0.0001) and vitreous (3.2 ± 0.4 vs. 1.5 ± 0.2 ng/mL, P < 0.0001) levels of PRL, and both levels were directly correlated (r = 0.58, P < 0.0002). The vitreous from non-diabetic patients or from PDR patients treated with levosulpiride, but not from placebo-treated PDR patients, inhibited the basic fibroblast growth factor (bFGF)- and vascular endothelial growth factor (VEGF)-induced proliferation of endothelial cells in culture. Vasoinhibin-neutralizing antibodies reduced the vitreous antiangiogenic effect. Matrix metalloproteases (MMPs) in the vitreous cleaved PRL to vasoinhibin, and their activity was higher in non-diabetic than in PDR patients. Conclusions: Levosulpiride increases the levels of PRL in the vitreous of PDR patients and promotes its MMP-mediated conversion to vasoinhibin, which can inhibit angiogenesis in DR. Translational Relevance: These findings support the potential therapeutic benefit of levosulpiride against vision loss in diabetes.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Diabetic Retinopathy/drug therapy , Endothelial Cells , Humans , Prolactin , Sulpiride/analogs & derivatives , Vascular Endothelial Growth Factor A , Vitreous Body
9.
J Neuroendocrinol ; 32(11): e12858, 2020 11.
Article in English | MEDLINE | ID: mdl-32449569

ABSTRACT

The hormone prolactin (PRL) is emerging as an important regulator of ocular blood vessels. PRL is pro-angiogenic and acquires anti-angiogenic properties after undergoing proteolytic cleavage to the PRL fragment, vasoinhibin. The vascularisation of the rodent retina develops after birth when it rapidly expands until completion at the end of the first postnatal week. Exposure of newborn mice to high oxygen levels lowers the rate of blood vessel growth. In the present study, we investigated whether PRL treatment modifies the vascularisation of the retina in newborn mice exposed to high oxygen or to normoxia and whether the retinal conversion of PRL to vasoinhibin may be altered in the neonate. Newborn mice and their nursing mothers were subjected to 75% oxygen or to normoxia from postnatal day (P) 6 to P8 (group 1) or from P2 to P5 (group 2). PRL (2 µg g-1 , i.p., twice a day) or vehicle was injected from P5 to P8 in group 1 and from P1 to P5 in group 2. PRL treatment reduced the retinal inhibition of blood vessel growth and the increase in vascular regression induced by hyperoxia as revealed by immunofluorescence staining of blood vessels and the expression of angiogenesis and apoptosis markers. The pro-angiogenic effect may involve a reduced conversion of PRL to vasoinhibin. Incubation of PRL with retinal extracts showed reduced activity of the PRL-cleaving protease, cathepsin D, in the neonate vs the adult retina that was further reduced under hyperoxia. PRL and the PRL receptor mRNA were expressed at higher levels in the retina at P8 than in the adult, whereas endogenous PRL was undetectable in the circulation at P8. We conclude that PRL has a pro-angiogenic effect in the neonate retina as a result of its reduced conversion to vasoinhibin and that PRL produced by the retina may help promote physiological vascularisation after birth.


Subject(s)
Hyperoxia , Neovascularization, Physiologic , Prolactin , Retinal Vessels , Animals , Female , Male , Mice , Pregnancy , Animals, Newborn , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Hyperoxia/pathology , Neovascularization, Physiologic/drug effects , Prolactin/blood , Prolactin/metabolism , Prolactin/pharmacology , Receptors, Prolactin/drug effects , Receptors, Prolactin/metabolism , Retinal Vessels/drug effects , Retinal Vessels/growth & development , Retinopathy of Prematurity/pathology
10.
Int J Mol Sci ; 20(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31689918

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of central vision loss and severe blindness among the elderly population. Recently, we reported on the association of the SGCD gene (encoding for δ-sarcoglycan) polymorphisms with AMD. However, the functional consequence of Sgcd alterations in retinal degeneration is not known. Herein, we characterized changes in the retina of the Sgcd knocked-out mouse (KO, Sgcd-/-). At baseline, we analyzed the retina structure of three-month-old wild-type (WT, Sgcd+/+) and Sgcd-/- mice by hematoxylin and eosin (H&E) staining, assessed the Sgcd-protein complex (α-, ß-, γ-, and ε-sarcoglycan, and sarcospan) by immunofluorescence (IF) and Western blot (WB), and performed electroretinography. Compared to the WT, Sgcd-/- mice are five times more likely to have retinal ruptures. Additionally, all the retinal layers are significantly thinner, more so in the inner plexiform layer (IPL). In addition, the number of nuclei in the KO versus the WT is ever so slightly increased. WT mice express Sgcd-protein partners in specific retinal layers, and as expected, KO mice have decreased or no protein expression, with a significant increase in the α subunit. At three months of age, there were no significant differences in the scotopic electroretinographic responses, regarding both a- and b-waves. According to our data, Sgcd-/- has a phenotype that is compatible with retinal degeneration.


Subject(s)
Retinal Degeneration/genetics , Sarcoglycans/genetics , Animals , Female , Male , Mice , Mice, Inbred C57BL , Retina/metabolism , Retina/pathology , Sarcoglycans/metabolism
11.
Acta Diabetol ; 56(9): 1031-1036, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30982154

ABSTRACT

AIMS: Retinopathy is a leading cause of vision impairment in diabetes. Its pathogenesis involves inflammation, pathological angiogenesis, neuronal and glial dysfunction. The purinergic P2X7 receptor (P2X7R) has a leading role in inflammation and angiogenesis. Potent and selective P2X7R blockers have been synthesized and tested in Phase I/II clinical studies. We hypothesize that P2X7R blockade will ameliorate diabetes-related pathological retinal changes. METHODS: Streptozotocin (STZ)-treated rats were intraperitoneally inoculated with either of two small molecule P2X7R receptor inhibitors, A740003 and AZ10606120, and after blood glucose levels increased to above 400 mg/dL, retinae were analyzed for P2X7R expression, vascular permeability, VEGF, and IL-6 expression. RESULTS: STZ administration caused a near fourfold increase in blood glucose, a large increase in retinal microvasculature permeability, as well as in retinal P2X7R, VEGF, and IL-6 expression. P2X7R blockade fully reversed retinal vascular permeability increase, VEGF accumulation, and IL-6 expression, with no effect on blood glucose. CONCLUSION: P2X7R blockade might be promising strategy for the treatment of microvascular changes observed in the early phases of diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetic Retinopathy/prevention & control , Purinergic P2X Receptor Antagonists/pharmacology , Retina/drug effects , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/pathology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Inflammation/complications , Inflammation/drug therapy , Inflammation/metabolism , Male , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Rats , Rats, Wistar , Receptors, Purinergic P2X7/metabolism , Retina/metabolism , Retina/pathology , Streptozocin , Treatment Outcome
12.
Ginecol Obstet Mex ; 77(1): 19-25, 2009 Jan.
Article in Spanish | MEDLINE | ID: mdl-19365958

ABSTRACT

OBJECTIVE: To determine the predictive value of the Doppler fluxometry of the umbilical artery and middle cerebral artery with the perinatal outcome in fetuses with intrauterine growth restriction. MATERIAL AND METHODS: We carried out a cross-sectional study. There were included 220 pregnant women with diagnosis of intrauterine growth restriction. We carried out in these women Doppler fluxometry of umbilical artery and middle cerebral artery. It was followed the perinatal outcome of the newborns. We used student's t test for comparing the fluxometry indexes; and logistic regression analysis to determine its association with the perinatal outcome. An alpha value was set at 0.05. RESULTS: The fluxometry indexes of the umbilical artery were abnormal in all the cases of intrauterine growth restriction. The fluxometry indexes of the middle cerebral artery were abnormal in a small number of fetuses with perinatal complications. In the logistic regression analysis the fluxometry index of the umbilical artery was significant in order to predict bad perinatal outcome, in the other hand, the middle cerebral artery was not significant. The perinatal complications diagnosed were: distress respiratory syndrome (37.2%) necrotizing enterocolitis (6.2%) and sepsis (6.2%). CONCLUSIONS: The Doppler fluxometry of the umbilical artery have better predictive value than the middle cerebral artery for predicting bad perinatal outcome. We recommend the assessment of umbilical artery as first choice in order to determine the well-being in fetuses with intrauterine growth restriction.


Subject(s)
Fetal Growth Retardation , Middle Cerebral Artery/diagnostic imaging , Ultrasonography, Doppler , Umbilical Arteries/diagnostic imaging , Adolescent , Adult , Cross-Sectional Studies , Female , Humans , Infant, Newborn , Predictive Value of Tests , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...