Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 124(35): 7636-7646, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32790400

ABSTRACT

The existing kinetic theory of gases is based on an analytical approach that becomes intractable for all but the simplest molecules. Here we propose a simple numerical scheme to compute the transport properties of molecular gases in the limit of infinite dilution. The approach that we propose is approximate, but our results for the diffusivity D, the viscosity η, and the thermal conductivity λ of hard spheres, Lennard-Jones particles, and rough hard spheres agree well with the standard (lowest order) Chapman-Enskog results. We also present results for a Lennard-Jones-dimer model for nitrogen, for which no analytical results are available. In the case of polyatomic molecules (we consider n-octane), our method remains simple and gives good predictions for the diffusivity and the viscosity. Computing the thermal conductivity of polyatomic molecules requires an approximate treatment of their quantized internal modes. We show that a well-known approximation that relates λ to D and η yields good results. We note that our approach should yield a lower limit to the exact value of D, η, and λ. Interestingly, the most sophisticated (higher-order) Chapman-Enskog results for rough hard spheres seem to violate this bound.

2.
Soft Matter ; 16(15): 3621-3627, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32101215

ABSTRACT

Gradients in temperature, concentration or electrostatic potential cannot exert forces on a bulk fluid; they can, however, exert forces on a fluid in a microscopic boundary layer surrounding a (nano)colloidal solute, resulting in so-called phoretic flow. Here we present a simulation study of phoretic flow around a spherical colloid held fixed in a concentration gradient. We show that the resulting flow velocity depends non-monotonically on the strength of the colloid-fluid interaction. The reason for this non-monotonic dependence is that solute particles are effectively trapped in a shell around the colloid and cannot contribute to diffusio-phoresis. We also observe that the flow depends sensitively on the anisotropy of solute-colloid interaction.

3.
Phys Chem Chem Phys ; 22(19): 10624-10633, 2020 May 21.
Article in English | MEDLINE | ID: mdl-31681941

ABSTRACT

The Lennard-Jones 12-6 potential (LJ) is arguably the most widely used pair potential in molecular simulations. In fact, it is so popular that the question is rarely asked whether it is fit for purpose. In this paper, we argue that, whilst the LJ potential was designed for noble gases such as argon, it is often used for systems where it is not expected to be particularly realistic. Under those circumstances, the disadvantages of the LJ potential become relevant: most important among these is that in simulations the LJ potential is always modified such that it has a finite range. More seriously, there is by now a whole family of different potentials that are all called Lennard-Jones 12-6, and that are all different - and that may have very different macroscopic properties. In this paper, we consider alternatives to the LJ 12-6 potential that could be employed under conditions where the LJ potential is only used as a typical short-ranged potential with attraction. We construct a class of potentials that are, in many respects LJ-like but that are by construction finite ranged, vanishing quadratically at the cut-off distance, and that are designed to be computationally cheap. Below, we present this potential and report numerical data for its thermodynamic and transport properties, for the most important cases (cut-off distance rc = 2σ ("LJ-like") and rc = 1.2σ (a typical "colloidal" potential)).

SELECTION OF CITATIONS
SEARCH DETAIL
...