Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Heliyon ; 10(10): e31562, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826746

ABSTRACT

Background: The respiratory tract harbors a variety of microbiota, whose composition and abundance depend on specific site factors, interaction with external factors, and disease. The aim of this study was to investigate the relationship between COVID-19 severity and the nasopharyngeal microbiome. Methods: We conducted a prospective cohort study in Mexico City, collecting nasopharyngeal swabs from 30 COVID-19 patients and 14 healthy volunteers. Microbiome profiling was performed using 16S rRNA gene analysis. Taxonomic assignment, classification, diversity analysis, core microbiome analysis, and statistical analysis were conducted using R packages. Results: The microbiome data analysis revealed taxonomic shifts within the nasopharyngeal microbiome in severe COVID-19. Particularly, we observed a significant reduction in the relative abundance of Lawsonella and Cutibacterium genera in critically ill COVID-19 patients (p < 0.001). In contrast, these patients exhibited a marked enrichment of Streptococcus, Actinomyces, Peptostreptococcus, Atopobium, Granulicatella, Mogibacterium, Veillonella, Prevotella_7, Rothia, Gemella, Alloprevotella, and Solobacterium genera (p < 0.01). Analysis of the core microbiome across all samples consistently identified the presence of Staphylococcus, Corynebacterium, and Streptococcus. Conclusions: Our study suggests that the disruption of physicochemical conditions and barriers resulting from inflammatory processes and the intubation procedure in critically ill COVID-19 patients may facilitate the colonization and invasion of the nasopharynx by oral microorganisms.

2.
Front Microbiol ; 15: 1392782, 2024.
Article in English | MEDLINE | ID: mdl-38881671

ABSTRACT

Introduction: The proteolytic activity of A Disintegrin and Metalloproteinase 17 (ADAM17) regulates the release of tumor necrosis factor (TNF) and TNF receptors (TNFRs) from cell surfaces. These molecules play important roles in tuberculosis (TB) shaping innate immune reactions and granuloma formation. Methods: Here, we investigated whether single nucleotide polymorphisms (SNPs) of ADAM17 influence TNF and TNFRs levels in 224 patients with active TB (ATB) and 118 healthy close contacts. Also, we looked for significant associations between SNPs of ADAM17 and ATB status. TNF, TNFR1, and TNFR2 levels were measured in plasma samples by ELISA. Four SNPs of ADAM17 (rs12692386, rs1524668, rs11684747, and rs55790676) were analyzed in DNA isolated from peripheral blood leucocytes. The association between ATB status, genotype, and cytokines was analyzed by multiple regression models. Results: Our results showed a higher frequency of rs11684747 and rs55790676 in close contacts than ATB patients. Coincidentally, heterozygous to these SNPs of ADAM17 showed higher plasma levels of TNF compared to homozygous to their respective ancestral alleles. Strikingly, the levels of TNF and TNFRs distinguished participant groups, with ATB patients displaying lower TNF and higher TNFR1/TNFR2 levels compared to their close contacts. Conclusion: These findings suggest a role for SNPs of ADAM17 in genetic susceptibility to ATB.

3.
Front Cell Infect Microbiol ; 13: 1155938, 2023.
Article in English | MEDLINE | ID: mdl-37260697

ABSTRACT

Background: The SARS-CoV-2 virus has caused unprecedented mortality since its emergence in late 2019. The continuous evolution of the viral genome through the concerted action of mutational forces has produced distinct variants that became dominant, challenging human immunity and vaccine development. Aim and methods: In this work, through an integrative genomic approach, we describe the molecular transition of SARS-CoV-2 by analyzing the viral whole genome sequences from 50 critical COVID-19 patients recruited during the first year of the pandemic in Mexico City. Results: Our results revealed differential levels of the evolutionary forces across the genome and specific mutational processes that have shaped the first two epidemiological waves of the pandemic in Mexico. Through phylogenetic analyses, we observed a genomic transition in the circulating SARS-CoV-2 genomes from several lineages prevalent in the first wave to a dominance of the B.1.1.519 variant (defined by T478K, P681H, and T732A mutations in the spike protein) in the second wave. Conclusion: This work contributes to a better understanding of the evolutionary dynamics and selective pressures that act at the genomic level, the prediction of more accurate variants of clinical significance, and a better comprehension of the molecular mechanisms driving the evolution of SARS-CoV-2 to improve vaccine and drug development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Mexico/epidemiology , Phylogeny , Genome, Viral , Mutation
4.
Chem Biol Interact ; 379: 110519, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37121298

ABSTRACT

The proximal tubule is a target of subchronic exposure to fluoride (F) in the kidney. Early markers are used to classify kidney damage, stage, and prognosis. MicroRNAs (miRNAs) are small sequences of non-coding single-stranded RNA that regulate gene expression and play an essential role in developing many pathologies, including renal diseases. This study aimed to evaluate the expression of Cytokine-Chemokine molecules (IL-1α/1ß/4/6/10, INF-γ, MIP-1α, MCP-1, RANTES, and TGF ß1/2/3) and inflammation-related miRNAs to evidence the possible renal mechanisms involved in subchronic exposure to F. Total protein and miRNAs were obtained from the renal cortex of male Wistar rats exposed to 0, 15 and 50 mg NaF/L through drinking water during 40 and 80 days. In addition, cytokines-chemokines were analyzed by multiplexing assay, and a panel of 77 sequences of inflammatory-related miRNAs was analyzed by qPCR. The results show that cytokines-chemokines expression was concentration- and time-dependent with F, where the 50 mg NaF/L were the main altered groups. The miRNAs expression resulted in statistically significant differences in thirty-four miRNAs in the 50 mg NaF/L groups at 40 and 80 days. Furthermore, a molecular interaction network analysis was performed. The relevant pathways modified by subchronic exposure to fluoride were related to extracellular matrix-receptor interaction, Mucin type O-glycan biosynthesis, Gap junction, and miRNAs involved with renal cell carcinoma. Thus, F-induced cytokines-chemokines suggest subchronic inflammation; detecting miRNAs related to cancer and proliferation indicates a transition from renal epithelium to pathologic tissue after fluoride exposure.


Subject(s)
MicroRNAs , Neoplasms , Rats , Male , Animals , Fluorides/toxicity , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Wistar , Cytokines/metabolism , Chemokines/genetics , Chemokines/metabolism , Inflammation/chemically induced
5.
Rheumatology (Oxford) ; 62(4): 1687-1698, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36063053

ABSTRACT

OBJECTIVES: SSc is a devastating autoimmune disease characterized by fibrosis and obliterative vasculopathy affecting the skin and visceral organs. While the processes mediating excessive extracellular matrix deposition and fibroblast proliferation are clear, the exact link between autoimmunity and fibrosis remains elusive. Th17 cells have been proposed as critical drivers of profibrotic inflammation during SSc, but little is known about the immune components supporting their pathogenic role. Our aim was to determine cytokine responses of stimulated monocyte-derived dendritic cells (Mo-DCs) and to determine how they influence T-cell cytokine production in SSc. MATERIAL AND METHODS: Dendritic cells (DCs) activate and shape T cell differentiation by producing polarizing cytokines. Hence, we investigated the cytokine responses of monocyte-derived DCs (Mo-DCs) from patients with limited cutaneous SSc (lcSSc), diffuse cutaneous SSc (dcSSc) and healthy controls (HCs) after stimulation with toll-like receptor (TLR) agonists. Also, using co-culture assays, we analysed T cell subpopulations after contact with autologous TLR-activated Mo-DCs. RESULTS: In general, we observed an increased production of Th17-related cytokines like IL-1ß, IL-17F, IL-21 and IL-22 by SSc compared with HC Mo-DCs, with variations between lcSSc vs dcSSc and early- vs late-stage subgroups. Noticeably, we found a significant increment in IL-33 production by Mo-DCs in all SSc cases regardless of their clinical phenotype. Strikingly, T cells displayed Th2, Th17 and dual Th2-Th17 phenotypes after exposure to autologous TLR-stimulated Mo-DCs from SSc patients but not HCs. These changes were pronounced in individuals with early-stage dcSSc and less significant in the late-stage lcSSc subgroup. CONCLUSIONS: Our findings suggest that functional alterations of DCs promote immune mechanisms favouring the aberrant T cell polarization and profibrotic inflammation behind clinical SSc heterogeneity.


Subject(s)
Scleroderma, Systemic , Humans , Cytokines , Fibrosis , Dendritic Cells/pathology , Inflammation
6.
Viruses ; 14(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36146782

ABSTRACT

SARS-CoV-2 uses the ACE2 receptor and the cellular protease TMPRSS2 for entry into target cells. The present study aimed to establish if the TMPRSS2 polymorphisms are associated with COVID-19 disease. The study included 609 patients with COVID-19 confirmed by RT-PCR test and 291 individuals negative for the SARS-CoV-2 infection confirmed by RT-PCR test and without antibodies anti-SARS-CoV-2. Four TMPRSS2 polymorphisms (rs12329760, rs2298659, rs456298, and rs462574) were determined using the 5'exonuclease TaqMan assays. Under different inheritance models, the rs2298659 (pcodominant2 = 0.018, precessive = 0.006, padditive = 0.019), rs456298 (pcodominant1 = 0.014, pcodominant2 = 0.004; pdominant = 0.009, precessive = 0.004, padditive = 0.0009), and rs462574 (pcodominant1 = 0.017, pcodominant2 = 0.004, pdominant = 0.041, precessive = 0.002, padditive = 0.003) polymorphisms were associated with high risk of developing COVID-19. Two risks (ATGC and GAAC) and two protectives (GAGC and GAGT) haplotypes were detected. High levels of lactic acid dehydrogenase (LDH) were observed in patients with the rs462574AA and rs456298TT genotypes (p = 0.005 and p = 0.020, respectively), whereas, high heart rate was present in patients with the rs462574AA genotype (p = 0.028). Our data suggest that the rs2298659, rs456298, and rs462574 polymorphisms independently and as haplotypes are associated with the risk of COVID-19. The rs456298 and rs462574 genotypes are related to high levels of LDH and heart rate.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Exonucleases , Humans , Lactic Acid , Oxidoreductases , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics
7.
J Interferon Cytokine Res ; 42(8): 352-368, 2022 08.
Article in English | MEDLINE | ID: mdl-35647937

ABSTRACT

The costs of coronavirus disease 2019 (COVID-19) are devastating. With millions of deaths worldwide, specific serological biomarkers, antiviral agents, and novel therapies are urgently required to reduce the disease burden. For these purposes, a profound understanding of the pathobiology of COVID-19 is mandatory. Notably, the study of immunity against other respiratory infections has generated reference knowledge to comprehend the paradox of the COVID-19 pathogenesis. Past studies point to a complex interplay between cytokines and other factors mediating wound healing and extracellular matrix (ECM) remodeling that results in exacerbated inflammation, tissue injury, severe manifestations, and a sequela of respiratory infections. This review provides an overview of the immunological process elicited after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Also, we analyzed available data about the participation of matrix metalloproteinases (MMPs) and transforming growth factor-beta (TGF-ß) in immune responses of the lungs. Furthermore, we discuss their possible implications in severe COVID-19 and sequela, including pulmonary fibrosis, and remark on the potential of these molecules as biomarkers for diagnosis, prognosis, and treatment of convalescent COVID-19 patients. Our review provides a theoretical framework for future research aimed to discover molecular hallmarks that, combined with clinical features, could serve as therapeutic targets and reliable biomarkers of the different clinical forms of COVID-19, including convalescence.


Subject(s)
COVID-19 , Matrix Metalloproteinases , Transforming Growth Factor beta , Biomarkers , COVID-19/immunology , Cost of Illness , Humans , Matrix Metalloproteinases/immunology , SARS-CoV-2 , Transforming Growth Factor beta/immunology
8.
J Interferon Cytokine Res ; 42(8): 430-443, 2022 08.
Article in English | MEDLINE | ID: mdl-35708622

ABSTRACT

Interferon-induced transmembrane (IFITM) proteins mediate protection against enveloped viruses by blocking membrane fusion at endosomes. IFITM1 and IFITM3 are crucial for protection against influenza, and various single nucleotide polymorphisms altering their function have been linked to disease susceptibility. However, bulk IFITM1 and IFITM3 mRNA expression dynamics and their correlation with clinical outcomes have not been extensively addressed in patients with respiratory infections. In this study, we evaluated the expression of IFITM1 and IFITM3 in peripheral leukocytes from healthy controls and individuals with severe pandemic influenza A(H1N1) or coronavirus disease 2019 (COVID-19). Comparisons between participants grouped according to their clinical characteristics, underlying disease, and outcomes showed that the downregulation of IFITM1 was a distinctive characteristic of severe pandemic influenza A(H1N1) that correlated with outcomes, including mortality. Conversely, increased IFITM3 expression was a common feature of severe pandemic influenza A(H1N1) and COVID-19. Using a high-dose murine model of infection, we confirmed not only the downregulation of IFITM1 but also of IFITM3 in the lungs of mice with severe influenza, as opposed to humans. Analyses in the comparative cohort also indicate the possible participation of IFITM3 in COVID-19. Our results add to the evidence supporting a protective function of IFITM proteins against viral respiratory infections in humans.


Subject(s)
Antigens, Differentiation , COVID-19 , Influenza, Human , Membrane Proteins , RNA-Binding Proteins , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , COVID-19/genetics , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Leukocytes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35056124

ABSTRACT

Orphan G-protein-coupled receptors (GPCR) comprise a large number of receptors which are widely distributed in the nervous system and represent an opportunity to identify new molecular targets in pain medicine. GPR55 and GPR119 are two orphan GPCR receptors whose physiological function is unclear. The aim was to explore the participation of spinal GPR55 and GPR119 in the processing of neuropathic pain in rats. Mechanical allodynia was evaluated using von Frey filaments. Protein localization and modulation were measured by immunohistochemistry and western blotting, respectively. Intrathecal administration of CID16020046 (selective GPR55 antagonist) or AS1269574 (selective GPR119 agonist) produced a dose-dependent antiallodynic effect, whereas O1062 (GPR55 agonist) and G-protein antagonist peptide dose-dependently prevented the antiallodynic effect of CID16020046 and AS1269574, respectively. Both GPR55 and GPR119 receptors were expressed in spinal cord, dorsal root ganglia and sciatic nerve, but only GPR119 was downregulated after 14 days of spinal nerve ligation. Data suggest that GPR55 and GPR119 participate in the processing of neuropathic pain and could be useful targets to manage neuropathic pain disorders.

10.
Front Immunol ; 12: 593595, 2021.
Article in English | MEDLINE | ID: mdl-33995342

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is a global health threat with the potential to cause severe disease manifestations in the lungs. Although COVID-19 has been extensively characterized clinically, the factors distinguishing SARS-CoV-2 from other respiratory viruses are unknown. Here, we compared the clinical, histopathological, and immunological characteristics of patients with COVID-19 and pandemic influenza A(H1N1). We observed a higher frequency of respiratory symptoms, increased tissue injury markers, and a histological pattern of alveolar pneumonia in pandemic influenza A(H1N1) patients. Conversely, dry cough, gastrointestinal symptoms and interstitial lung pathology were observed in COVID-19 cases. Pandemic influenza A(H1N1) was characterized by higher levels of IL-1RA, TNF-α, CCL3, G-CSF, APRIL, sTNF-R1, sTNF-R2, sCD30, and sCD163. Meanwhile, COVID-19 displayed an immune profile distinguished by increased Th1 (IL-12, IFN-γ) and Th2 (IL-4, IL-5, IL-10, IL-13) cytokine levels, along with IL-1ß, IL-6, CCL11, VEGF, TWEAK, TSLP, MMP-1, and MMP-3. Our data suggest that SARS-CoV-2 induces a dysbalanced polyfunctional inflammatory response that is different from the immune response against pandemic influenza A(H1N1). Furthermore, we demonstrated the diagnostic potential of some clinical and immune factors to differentiate both diseases. These findings might be relevant for the ongoing and future influenza seasons in the Northern Hemisphere, which are historically unique due to their convergence with the COVID-19 pandemic.


Subject(s)
COVID-19 , Cytokines , Influenza A Virus, H1N1 Subtype , Influenza, Human , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 3 , Receptors, Immunologic , Adult , Aged , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , Cytokines/blood , Cytokines/immunology , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/blood , Influenza, Human/epidemiology , Influenza, Human/immunology , Male , Matrix Metalloproteinase 1/blood , Matrix Metalloproteinase 1/immunology , Matrix Metalloproteinase 3/blood , Matrix Metalloproteinase 3/immunology , Middle Aged , Prospective Studies , Receptors, Immunologic/blood , Receptors, Immunologic/immunology , Th1 Cells/immunology , Th2 Cells/immunology
11.
J Immunol Res ; 2021: 5517856, 2021.
Article in English | MEDLINE | ID: mdl-34007850

ABSTRACT

The mechanisms underlying the immunopathology of tuberculous meningitis (TBM), the most severe clinical form of extrapulmonary tuberculosis (TB), are not understood. It is currently believed that the spread of Mycobacterium tuberculosis (Mtb) from the lung is an early event that occurs before the establishment of adaptive immunity. Hence, several innate immune mechanisms may participate in the containment of Mtb infection and prevent extrapulmonary disease manifestations. Natural killer (NK) cells participate in defensive processes that distinguish latent TB infection (LTBI) from active pulmonary TB (PTB). However, their role in TBM is unknown. Here, we performed a cross-sectional analysis of circulating NK cellCID="C008" value="s" phenotype in a prospective cohort of TBM patients (n = 10) using flow cytometry. Also, we addressed the responses of memory-like NK cell subpopulations to the contact with Mtb antigens in vitro. Finally, we determined plasma levels of soluble NKG2D receptor ligands in our cohort of TBM patients by enzyme-linked immunosorbent assay (ELISA). Our comparative groups consisted of individuals with LTBI (n = 11) and PTB (n = 27) patients. We found that NK cells from TBM patients showed lower absolute frequencies, higher CD69 expression, and poor expansion of the CD45RO+ memory-like subpopulation upon Mtb exposure in vitro compared to LTBI individuals. In addition, a reduction in the frequency of CD56brightCD16- NK cells characterized TBM patients but not LTBI or PTB subjects. Our study expands on earlier reports about the role of NK cells in TBM showing a reduced frequency of cytokine-producing cells compared to LTBI and PTB.


Subject(s)
Killer Cells, Natural/immunology , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Meningeal/immunology , Tuberculosis, Pulmonary/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Cytokines/metabolism , Female , Humans , Immunity, Innate , Immunophenotyping , Killer Cells, Natural/metabolism , Latent Tuberculosis/blood , Latent Tuberculosis/microbiology , Male , Mexico , Middle Aged , Prospective Studies , Tuberculosis, Meningeal/blood , Tuberculosis, Meningeal/microbiology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/microbiology , Young Adult
13.
Front Immunol ; 12: 633297, 2021.
Article in English | MEDLINE | ID: mdl-33717172

ABSTRACT

The C-X-C motif chemokine ligand 17 (CXCL17) is chemotactic for myeloid cells, exhibits bactericidal activity, and exerts anti-viral functions. This chemokine is constitutively expressed in the respiratory tract, suggesting a role in lung defenses. However, little is known about the participation of CXCL17 against relevant respiratory pathogens in humans. Here, we evaluated the serum levels and lung tissue expression pattern of CXCL17 in a cohort of patients with severe pandemic influenza A(H1N1) from Mexico City. Peripheral blood samples obtained on admission and seven days after hospitalization were processed for determinations of serum CXCL17 levels by enzyme-linked immunosorbent assay (ELISA). The expression of CXCL17 was assessed by immunohistochemistry (IHQ) in lung autopsy specimens from patients that succumbed to the disease. Serum CXCL17 levels were also analyzed in two additional comparative cohorts of coronavirus disease 2019 (COVID-19) and pulmonary tuberculosis (TB) patients. Additionally, the expression of CXCL17 was tested in lung autopsy specimens from COVID-19 patients. A total of 122 patients were enrolled in the study, from which 68 had pandemic influenza A(H1N1), 24 had COVID-19, and 30 with PTB. CXCL17 was detected in post-mortem lung specimens from patients that died of pandemic influenza A(H1N1) and COVID-19. Interestingly, serum levels of CXCL17 were increased only in patients with pandemic influenza A(H1N1), but not COVID-19 and PTB. CXCL17 not only differentiated pandemic influenza A(H1N1) from other respiratory infections but showed prognostic value for influenza-associated mortality and renal failure in machine-learning algorithms and regression analyses. Using cell culture assays, we also identified that human alveolar A549 cells and peripheral blood monocyte-derived macrophages increase their CXCL17 production capacity after influenza A(H1N1) pdm09 virus infection. Our results for the first time demonstrate an induction of CXCL17 specifically during pandemic influenza A(H1N1), but not COVID-19 and PTB in humans. These findings could be of great utility to differentiate influenza and COVID-19 and to predict poor prognosis specially at settings of high incidence of pandemic A(H1N1). Future studies on the role of CXCL17 not only in severe pandemic influenza, but also in seasonal influenza, COVID-19, and PTB are required to validate our results.


Subject(s)
Biomarkers/metabolism , Chemokines, CXC/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/diagnosis , Lung/metabolism , Mycobacterium tuberculosis/physiology , SARS-CoV-2/physiology , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , Chemokines, CXC/genetics , Chemokines, CXC/immunology , Cohort Studies , Disease Progression , Female , Humans , Influenza, Human/mortality , Lung/pathology , Male , Mexico , Middle Aged , Pandemics , Patient Outcome Assessment , Prognosis , Survival Analysis , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/mortality , Young Adult
14.
J Infect Dis ; 224(1): 21-30, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33668070

ABSTRACT

The differentiation between influenza and coronavirus disease 2019 (COVID-19) could constitute a diagnostic challenge during the ongoing winter owing to their clinical similitude. Thus, novel biomarkers are required to enable making this distinction. Here, we evaluated whether the surfactant protein D (SP-D), a collectin produced at the alveolar epithelium with known immune properties, was useful to differentiate pandemic influenza A(H1N1) from COVID-19 in critically ill patients. Our results revealed high serum SP-D levels in patients with severe pandemic influenza but not those with COVID-19. This finding was validated in a separate cohort of mechanically ventilated patients with COVID-19 who also showed low plasma SP-D levels. However, plasma SP-D levels did not distinguish seasonal influenza from COVID-19 in mild-to-moderate disease. Finally, we found that high serum SP-D levels were associated with death and renal failure among severe pandemic influenza cases. Thus, our studies have identified SP-D as a unique biomarker expressed during severe pandemic influenza but not COVID-19.


Subject(s)
COVID-19/genetics , Gene Expression , Host-Pathogen Interactions/genetics , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Pulmonary Surfactant-Associated Protein D/genetics , SARS-CoV-2 , Adult , Aged , Biomarkers , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Coinfection , Enzyme-Linked Immunosorbent Assay , Female , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Male , Middle Aged , Prognosis , Pulmonary Surfactant-Associated Protein D/blood , Severity of Illness Index , Symptom Assessment , Young Adult
15.
Eur Respir J ; 58(2)2021 08.
Article in English | MEDLINE | ID: mdl-33446609

ABSTRACT

BACKGROUND: Around 8-10% of individuals over 50 years of age present interstitial lung abnormalities (ILAs), but their risk factors are uncertain. METHODS: From 817 individuals recruited in our lung ageing programme at the Mexican National Institute of Respiratory Diseases, 80 (9.7%) showed ILAs and were compared with 564 individuals of the same cohort with normal high-resolution computed tomography to evaluate demographic and functional differences, and with 80 individuals randomly selected from the same cohort for biomarkers. We evaluated MUC5B variant rs35705950, telomere length, and serum levels of matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, interleukin (IL)-6, surfactant protein (SP)-D, α-Klotho and resistin. RESULTS: Individuals with ILAs were usually males (p<0.005), older than controls (p<0.0001), smokers (p=0.01), with a greater frequency of MUC5B rs35705950 (OR 3.5, 95% CI 1.3-9.4; p=0.01), and reduced diffusing capacity of the lung for carbon monoxide and oxygen saturation. Resistin, IL-6, SP-D, MMP-1, MMP-7 and MMP-13 were significantly increased in individuals with ILAs. Resistin (12±5 versus 9±4 ng·mL-1; p=0.0005) and MMP-13 (357±143 versus 298±116 pg·mL-1; p=0.004) were the most increased biomarkers. On follow-up (24±18 months), 18 individuals showed progression which was associated with gastro-oesophageal reflux disease (OR 4.1, 95% CI 1.2-12.9; p=0.02) and in females with diabetes mellitus (OR 5.3, 95% CI 1.0-27.4; p=0.01). CONCLUSIONS: Around 10% of respiratory asymptomatic individuals enrolled in our lung ageing programme show ILAs. Increased serum concentrations of pro-inflammatory molecules and MMPs are associated with ILAs.


Subject(s)
Lung Diseases, Interstitial , Female , Humans , Lung/diagnostic imaging , Male , Matrix Metalloproteinase 7 , Mucin-5B , Risk Factors
16.
Front Immunol ; 11: 582414, 2020.
Article in English | MEDLINE | ID: mdl-33117393

ABSTRACT

Natural killer (NK) cells participate in immunity against several pathogens by exerting cytotoxic and cytokine-production activities. Some NK cell subsets also mediate recall responses that resemble memory of adaptive lymphocytes against antigenic and non-antigenic stimuli. The C-X-C motif chemokine receptor 6 (CXCR6) is crucial for the development and maintenance of memory-like responses in murine NK cells. In humans, several subsets of tissue-resident and circulating NK cells with different functional properties express CXCR6. However, the role of CXCR6+ NK cells in immunity against relevant human pathogens is unknown. Here, we addressed whether murine and human CXCR6+ NK cells respond to antigens of Mycobacterium tuberculosis (Mtb). For this purpose, we evaluated the immunophenotype of hepatic and splenic CXCR6+ NK cells in mice exposed to a cell-wall (CW) extract of Mtb strain H37Rv. Also, we characterized the expression of CXCR6 in peripheral NK cells from active pulmonary tuberculosis (ATB) patients, individuals with latent TB infection (LTBI), and healthy volunteer donors (HD). Furthermore, we evaluated the responses of CXCR6+ NK cells from HD, LTBI, and ATB subjects to the in vitro exposure to CW preparations of Mtb H37Rv and Mtb HN878. Our results showed that murine hepatic CXCR6+ NK cells expand in vivo after consecutive administrations of Mtb H37Rv CW to mice. Remarkably, pooled hepatic and splenic, but not isolated splenic NK cells from treated mice, enhance their cytokine production capacity after an in vitro re-challenge with H37Rv CW. In humans, CXCR6+ NK cells were barely detected in the peripheral blood, although slightly significative increments in the percentage of CXCR6+, CXCR6+CD49a-, CXCR6+CD49a+, and CXCR6+CD69+ NK cells were observed in ATB patients as compared to HD and LTBI individuals. In contrast, the expansion of CXCR6+CD49a- and CXCR6+CD69+ NK cells in response to the in vitro stimulation with Mtb H37Rv was higher in LTBI individuals than in ATB patients. Finally, we found that Mtb HN878 CW generates IFN-γ-producing CXCR6+CD49a+ NK cells. Our results demonstrate that antigens of both laboratory-adapted and clinical Mtb strains are stimulating factors for murine and human CXCR6+ NK cells. Future studies evaluating the role of CXCR6+ NK cells during TB are warranted.


Subject(s)
Antigens, Bacterial/immunology , Killer Cells, Natural/immunology , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Tuberculosis, Pulmonary/immunology , Animals , Cells, Cultured , Female , Humans , Immunophenotyping , Interferon-gamma/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Receptors, CXCR6/metabolism
17.
Int J Infect Dis ; 94: 4-11, 2020 May.
Article in English | MEDLINE | ID: mdl-32081772

ABSTRACT

OBJECTIVES: To describe the kinetics of circulating cytokines and chemokines in humans with ZIKAV infection. METHODS: Serum levels of different immune mediators in patients with ZIKAV infection were measured at distinct stages of the disease, as well as in culture supernatants from human monocytes infected with a clinical ZIKAV isolate. We also looked for clinical features associated with specific immune signatures among symptomatic patients. RESULTS: We evaluated 23 ZIKAV-infected patients. Their mean age was 32 ± 8.3 years and 65% were female. ZIKAV patients showed elevated IL-9, IL-17A, and CXCL10 levels at acute stages of the disease. At day 28, levels of CCL4 and CCL5 were increased, whereas IL-1RA, CXCL8 and CCL2 were decreased. At baseline, IL-7 was increased among patients with headache, whereas CCL2, and CCL3 were decreased in patients with bleeding and rash, respectively. Our clinical ZIKAV isolate induced a broad immune response in monocytes that did not resemble the signature observed in ZIKAV patients. CONCLUSIONS: We showed a unique immune signature in our cohort of ZIKAV-infected patients. Our study may provide valuable evidence helpful to identify immune correlates of protection against ZIKAV.


Subject(s)
Chemokines/blood , Cytokines/blood , Zika Virus Infection/immunology , Zika Virus/immunology , Adult , Cohort Studies , Female , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin-8/blood , Male , Mexico , Zika Virus Infection/blood , Zika Virus Infection/virology
18.
Mediators Inflamm ; 2019: 5049245, 2019.
Article in English | MEDLINE | ID: mdl-32082077

ABSTRACT

BACKGROUND: The role of miRNAs in the pathogenesis of cutaneous lupus has not been studied. OBJECTIVE: It was to assess the levels of a selected panel of circulating miRNAs that could be involved in the regulation of the immune response, inflammation, and fibrosis in cutaneous lupus. METHODS: It was a cross-sectional study. We included 22 patients with subacute (SCLE) and 20 with discoid (DLE) lesions, and 19 healthy donors (HD). qRT-PCR for miRNA analysis, flow cytometry in peripheral blood, and skin immunohistochemistry were performed to determine the distribution of CD4 T cells and regulatory cells and their correlation with circulating miRNAs. RESULTS: miR-150, miR-1246, miR-21, miR-23b, and miR-146 levels were downregulated in SCLE vs. HD. miR-150, miR-1246, and miR-21 levels were downregulated in DLE vs. HD. miR-150, miR-1246, and miR-21 levels were downregulated in DLE γ + with miR-1246 in SCLE, whereas CD123+/CD196+/IDO+ cells were positively associated with miR-150 in DLE. In the tissue, CD4+/IL-4+ and CD20+/IL-10+ cells were positively associated with miR-21 and CD4+/IFN-γ + with miR-1246 in SCLE, whereas CD123+/CD196+/IDO+ cells were positively associated with miR-150 in DLE. In the tissue, CD4+/IL-4+ and CD20+/IL-10+ cells were positively associated with miR-21 and CD4+/IFN-ß, thyroid hormone, and cancer signaling pathways were shared between miR-21, miR-31, miR-23b, miR-146a, miR-1246, and miR-150. CONCLUSIONS: A downregulation of miR-150, miR-1246, and miR-21 in both CLE varieties vs. HD. miR-150, miR-1246, and miR-21 levels were downregulated in DLE.


Subject(s)
Lupus Erythematosus, Cutaneous/metabolism , Lupus Erythematosus, Cutaneous/pathology , MicroRNAs/metabolism , Adult , Cross-Sectional Studies , Female , Flow Cytometry , Humans , Immunohistochemistry , Leukocytes, Mononuclear/metabolism , Linear Models , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Skin/metabolism , Skin/pathology
19.
Tohoku J Exp Med ; 246(2): 107-120, 2018 10.
Article in English | MEDLINE | ID: mdl-30369556

ABSTRACT

Cancer-associated fibroblasts (CAFs) are the main component of the tumor stroma and promote tumor progression through several mechanisms. Recent evidence indicates that small noncoding RNAs, microRNAs (miRNAs), play key roles in CAF tumor-promoting properties; however, the role of miRNAs in lung cancer-associated fibroblasts remains poorly defined. We characterized the differential miRNA expression profile of fibroblasts isolated from matched tumor front (F-CAFs), inner tumor (In-CAFs), and normal adjacent (NFs) tissues from four lung adenocarcinoma patients (ADs) using microarray analysis. Proliferation and invasion assays of A549 human lung cancer cells in the presence of conditioned medium from F-CAFs, In-CAFs or NFs were performed to assess tumorigenic properties. Ten identified candidate miRNAs in F-CAFs, In-CAFs and NFs from 12 ADs were then validated by RT-PCR. Both F-CAFs and In-CAFs enhanced the proliferation and invasion of A549 cells compared with NFs; moreover, F-CAFs showed a significantly stronger effect than In-CAFs. RT-PCR validation demonstrated three downregulated miRNAs in F-CAFs compared with NFs (miR-145-3p, miR-299-3p, and miR-505-3p), two in F-CAFs compared with In-CAFs (miR-410-3p and miR-485-5p), but no differentially expressed miRNAs between In-CAFs and NFs. Further target-gene prediction and pathway enrichment analysis indicated that deregulated miRNAs in F-CAFs showed significant associations with "pathways in cancer" (miR-145-3p, miR-299-3p and miR-410-3p), "Wnt signaling pathway" (miR-410-3p and miR-505-3p), and "TGF-beta signaling pathway" (miR-410-3p). Importantly, a tumor-promoting growth factor targeted by those miRNAs, VEGFA, was upregulated in F-CAFs compared with NFs, as judged by RT-PCR. In conclusion, deregulated miRNAs in F-CAFs are potentially associated with CAF tumor-promoting properties.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cancer-Associated Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , A549 Cells , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Proliferation , Cell Separation , Gene Expression Profiling , Gene Regulatory Networks , Humans , MicroRNAs/metabolism , Neoplasm Invasiveness , Signal Transduction/genetics , Up-Regulation/genetics , Vascular Endothelial Growth Factor A/metabolism
20.
JCI Insight ; 2(19)2017 10 05.
Article in English | MEDLINE | ID: mdl-28978810

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a global health threat, compounded by the emergence of drug-resistant strains. A hallmark of pulmonary tuberculosis (TB) is the formation of hypoxic necrotic granulomas, which upon disintegration, release infectious Mtb. Furthermore, hypoxic necrotic granulomas are associated with increased disease severity and provide a niche for drug-resistant Mtb. However, the host immune responses that promote the development of hypoxic TB granulomas are not well described. Using a necrotic Mtb mouse model, we show that loss of Mtb virulence factors, such as phenolic glycolipids, decreases the production of the proinflammatory cytokine IL-17 (also referred to as IL-17A). IL-17 production negatively regulates the development of hypoxic TB granulomas by limiting the expression of the transcription factor hypoxia-inducible factor 1α (HIF1α). In human TB patients, HIF1α mRNA expression is increased. Through genotyping and association analyses in human samples, we identified a link between the single nucleotide polymorphism rs2275913 in the IL-17 promoter (-197G/G), which is associated with decreased IL-17 production upon stimulation with Mtb cell wall. Together, our data highlight a potentially novel role for IL-17 in limiting the development of hypoxic necrotic granulomas and reducing disease severity in TB.


Subject(s)
Granuloma/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Interleukin-17/immunology , Tuberculosis, Pulmonary/immunology , Adult , Aged , Animals , Cell Hypoxia/immunology , Female , Gene Expression Regulation/immunology , Granuloma/microbiology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation Mediators/metabolism , Interleukin-17/biosynthesis , Male , Mice, Inbred Strains , Middle Aged , RNA, Messenger/genetics , Tuberculosis, Pulmonary/complications , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...