Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 893: 164906, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37327895

ABSTRACT

The variety of activities carried out within hospitals results in their final discharges being considered hotspots for the emission of emerging pollutants. Hospital effluents contain different substances capable of altering the health of ecosystems and biota, furthermore, little research has been done to elucidate the adverse effects of these anthropogenic matrices. Taking this into account, herein we aimed to establish whether exposure to different proportions (2 %, 2.5 %, 3 %, and 3.5 %) of hospital effluent treated by hospital wastewater treatment plant (HWWTP) can induce oxidative stress, behavioral alterations, neurotoxicity, and disruption of gene expression in Danio rerio brain. Our results demonstrate that the hospital effluent under-study induces an anxiety-like state and alters swimming behavior, as fish exhibited increased freezing episodes, erratic movements and traveled less distance than the control group. In addition, after exposure we observed a meaningful rise in biomarkers related to oxidative damage, such as protein carbonyl content (PCC), lipoperoxidation level (LPX), hydroperoxide content (HPC), as well as an increase in enzyme antioxidant activities of catalase (CAT), and superoxide dismutase (SOD) upon short-term exposure. Moreover, we discovered an inhibition of acetylcholinesterase (AChE) activity in a hospital effluent proportion-dependent manner. Regarding gene expression, a significant disruption of genes related to antioxidant response (cat, sod, nrf2), apoptosis (casp6, bax, casp9), and detoxification (cyp1a1) was observed. In conclusion, our outcomes suggest that hospital effluents enhance the emergence of oxidative molecules, and promote a highly oxidative environment at the neuronal level that favors the inhibition of AChE activity, which consequently explains the anxiety-like behavior observed in D. rerio adults. Lastly, our research sheds light on possible toxicodynamic mechanism by which these anthropogenic matrices may trigger damage in D. rerio brain.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Antioxidants/metabolism , Protein Carbonylation , Acetylcholinesterase/metabolism , Ecosystem , Oxidative Stress , Superoxide Dismutase/metabolism , Hospitals , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 887: 164057, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37178842

ABSTRACT

Hospital effluents represent a threat to the environment owing to the content of toxic substances capable of altering the structure and function of ecosystems. Despite the available information about the impact of hospital effluents on aquatic organisms, the molecular mechanism underlying this process has received little or no attention. The present study aimed to evaluate the oxidative stress and gene expression induced by different proportions (2 %, 2.5 %, 3 % and 3.5 %) of hospital effluent treated by hospital wastewater treatment plant (HWWTP) in liver, gut, and gills of Danio rerio at different exposure times. Significant increases in the levels of protein carbonylation content (PCC), hydroperoxides content (HPC), lipoperoxidation level (LPX) and superoxide dismutase (SOD) and catalase (CAT) activity were observed in most of the organs evaluated at the four proportions tested with respect to the control group (p < 0.05). It was found that at longer exposure times there is a lower response in SOD activity, suggesting catalytic depletion due to the oxidative environment at the intracellular level. The lack of complementarity between SOD and mRNA activity patterns indicates that the activity itself is subordinated to post-transcriptional processes. Upregulation of transcripts related to antioxidant processes (sod, cat, nrf2), detoxification (cyp1a1) and apoptosis (bax, casp6, and casp9) was observed in response to oxidative imbalance. On the other hand, the metataxonomic approach allowed the characterization of pathogenic bacterial genera such as Legionella, Pseudomonas, Clostridium XI, Parachlamydia and Mycobacterium present in the hospital effluent. Our findings indicate that although hospital effluent was treated by HWWTP, it caused oxidative stress damage and disrupted gene expression by decreasing the antioxidant response in Danio rerio.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Antioxidants/metabolism , Ecosystem , Oxidative Stress , Catalase/metabolism , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity , Hospitals , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...