Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 248(23): 2381-2392, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38143435

ABSTRACT

Disturbance of sleep homeostasis encompasses health issues, including metabolic disorders like obesity, diabetes, and augmented stress vulnerability. Sleep and stress interact bidirectionally to influence the central nervous system and metabolism. Murine models demonstrate that decreased sleep time is associated with an increased systemic stress response, characterized by endocrinal imbalance, including the elevated activity of hypothalamic-pituitary-adrenal axis, augmented insulin, and reduced adiponectin, affecting peripheral organs physiology, mainly the white adipose tissue (WAT). Within peripheral organs, a local stress response can also be activated by promoting the formation of corticosterone. This local amplifying glucocorticoid signaling is favored through the activation of the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1). In WAT, 11ß-HSD1 activity is upregulated by the sympathetic nervous system, suggesting a link between sleep loss, augmented stress response, and a potential WAT metabolic disturbance. To gain more understanding about this relationship, metabolic and stress responses of WAT-sympathectomized rats were analyzed to identify the contribution of the autonomic nervous system to stress response-related metabolic disorders during chronic sleep restriction. Male Wistar rats under sleep restriction were allowed just 6 h of daily sleep over eight weeks. Results showed that rats under sleep restriction presented higher serum corticosterone, increased adipose tissue 11ß-HSD1 activity, weight loss, decreased visceral fat, augmented adiponectin, lower leptin levels, glucose tolerance impairment, and mildly decreased daily body temperature. In contrast, sympathectomized rats under sleep restriction exhibited decreased stress response (lower serum corticosterone and 11ß-HSD1 activity). In addition, they maintained weight loss, explained by a reduced visceral fat pad, leptin, and adiponectin, improved glucose management, and persisting decline in body temperature. These results suggest autonomic nervous system is partially responsible for the WAT-exacerbated stress response and its metabolic and physiological disturbances.


Subject(s)
Corticosterone , Metabolic Diseases , Male , Mice , Rats , Animals , Corticosterone/metabolism , Leptin/metabolism , Intra-Abdominal Fat/metabolism , Adiponectin/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Hypothalamo-Hypophyseal System/metabolism , Rats, Wistar , Pituitary-Adrenal System/metabolism , Adipose Tissue/metabolism , Weight Loss , Sleep , Metabolic Diseases/metabolism , Sympathectomy , Glucose/metabolism
2.
Front Neurosci ; 16: 907508, 2022.
Article in English | MEDLINE | ID: mdl-35937866

ABSTRACT

Epidemiological and experimental evidence recognize a relationship between sleep-wake cycles and adiposity levels, but the mechanisms that link both are not entirely understood. Adipose tissue secretes adiponectin and leptin hormones, mainly involved as indicators of adiposity levels and recently associated to sleep. To understand how two of the main adipose tissue hormones could influence sleep-wake regulation, we evaluated in male rats, the effect of direct administration of adiponectin or leptin in the ventrolateral preoptic nuclei (VLPO), a major area for sleep promotion. The presence of adiponectin (AdipoR1 and AdipoR2) and leptin receptors in VLPO were confirmed by immunohistochemistry. Adiponectin administration increased wakefulness during the rest phase, reduced delta power, and activated wake-promoting neurons, such as the locus coeruleus (LC), tuberomammillary nucleus (TMN) and hypocretin/orexin neurons (OX) within the lateral hypothalamus (LH) and perifornical area (PeF). Conversely, leptin promoted REM and NREM sleep, including increase of delta power during NREM sleep, and induced c-Fos expression in VLPO and melanin concentrating hormone expressing neurons (MCH). In addition, a reduction in wake-promoting neurons activity was found in the TMN, lateral hypothalamus (LH) and perifornical area (PeF), including in the OX neurons. Moreover, leptin administration reduced tyrosine hydroxylase (TH) immunoreactivity in the LC. Our data suggest that adiponectin and leptin act as hormonal mediators between the status of body energy and the regulation of the sleep-wake cycle.

3.
J Neurosci ; 35(46): 15419-29, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26586828

ABSTRACT

In mammals, daily changes in body temperature (Tb) depend on the integrity of the suprachiasmatic nucleus (SCN). Fasting influences the Tb in the resting period and the presence of the SCN is essential for this process. However, the origin of this circadian/metabolic influence is unknown. We hypothesized that, not only the SCN but also the arcuate nucleus (ARC), are involved in the Tb setting through afferents to the thermoregulatory median preoptic nucleus (MnPO). Therefore, we investigated by neuronal tracing and microdialysis experiments the possible targeting of the MnPO by the SCN and the ARC in male Wistar rats. We observed that vasopressin release from the SCN decreases the temperature just before light onset, whereas α-melanocyte stimulating hormone release, especially at the end of the dark period, maintains high temperature. Both peptides have opposite effects on the brown adipose tissue activity through thermoregulatory nuclei such as the dorsomedial nucleus of the hypothalamus and the dorsal raphe nucleus. The present study indicates that the coordination between circadian and metabolic signaling within the hypothalamus is essential for an adequate temperature control. SIGNIFICANCE STATEMENT: When circadian and metabolic systems are not well synchronized, individuals may develop metabolic diseases. The underlying mechanisms are unknown. Here, we demonstrate that the balance between the releases of neuropeptides derived from the biological clock and from a metabolic sensory organ as the arcuate nucleus, are essential for an adequate temperature control. These observations show that brain areas involved in circadian and metabolic functions of the body need to interact to produce a coherent arrangement of physiological processes associated with temperature control.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Temperature , Animals , Antidiuretic Hormone Receptor Antagonists/pharmacology , Arcuate Nucleus of Hypothalamus/cytology , Arginine Vasopressin/analogs & derivatives , Arginine Vasopressin/metabolism , Arginine Vasopressin/pharmacology , Cholera Toxin/pharmacokinetics , Glutamate Decarboxylase/metabolism , Melanocyte-Stimulating Hormones/pharmacology , Microdialysis , Neurons/drug effects , Neurons/metabolism , Neuropeptides/pharmacology , Photic Stimulation , Preoptic Area/drug effects , Preoptic Area/physiology , Proto-Oncogene Proteins c-fos , Rats , Suprachiasmatic Nucleus/cytology , alpha-MSH/analogs & derivatives , alpha-MSH/metabolism , alpha-MSH/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...