Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microb Ecol ; 87(1): 76, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801423

ABSTRACT

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Subject(s)
Arabidopsis , Bacillus , Plant Diseases , Bacillus/physiology , Arabidopsis/microbiology , Arabidopsis/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Quorum Sensing , Chromobacterium/physiology , Chromobacterium/growth & development , Biological Control Agents/pharmacology , Plant Development , Seedlings/microbiology , Seedlings/growth & development , Soil Microbiology
2.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474088

ABSTRACT

Members of the phloem protein 16 (PP16) gene family are induced by elicitors in rice and the corresponding proteins from cucurbits, which display RNA binding and intercellular transport activities, are accumulated in phloem sap. These proteins facilitate the movement of protein complexes through the phloem translocation flow and may be involved in the response to water deficit, among other functions. However, there is scant information regarding their function in other plants, including the identification of paralog genes in non-vascular plants and chlorophytes. In the present work, an evolutionary and structural analysis of the PP16 family in green plants (Viridiplantae) was carried out. Data mining in different databases indicated that PP16 likely originated from a larger gene present in an ancestral lineage that gave rise to chlorophytes and multicellular plants. This gene encodes a protein related to synaptotagmin, which is involved in vesicular transport in animal systems, although other members of this family play a role in lipid turnover in endomembranes and organelles. These proteins contain a membrane-binding C2 domain shared with PP16 proteins in vascular plants. In silico analysis of the predicted structure of the PP16 protein family identified several ß-sheets, one α-helix, and intrinsically disordered regions. PP16 may have been originally involved in vesicular trafficking and/or membrane maintenance but specialized in long-distance signaling during the emergence of the plant vascular system.


Subject(s)
Plant Proteins , Viridiplantae , Plant Proteins/genetics , Phloem/metabolism , Plants/metabolism , Biological Transport , Viridiplantae/metabolism
3.
Insects ; 14(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887819

ABSTRACT

Insects are under constant selective pressure, which has resulted in adaptations to novel niches such as crops. This is the case of the pest Melanaphis sacchari, the sugarcane aphid, native to Africa and currently spreading worldwide. The aphid undergoes successful parthenogenesis, causing important damage to a variety of crops and leading to important economic losses for farmers. A natural M. sacchari population grown in sorghum was studied to identify its microbiome through the sequencing of its 16S rDNA metagenome. A high proportion of Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria, was observed. We also detected Wolbachia, which correlates with the asexual reproduction of its host. M. sacchari was challenged in a bioassay with the antibiotics oxytetracycline and streptomycin, resulting in a dose-dependent decay of its survival rate. The possibility of controlling this pest by altering its microbiota is proposed.

4.
Curr Issues Mol Biol ; 45(9): 7538-7556, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37754259

ABSTRACT

Ouabain, an organic compound with the ability to strengthen the contraction of the heart muscle, was originally derived from plants. It has been observed that certain mammalian species, including humans, naturally produce ouabain, leading to its classification as a new type of hormone. When ouabain binds to Na+/K+-ATPase, it elicits various physiological effects, although these effects are not well characterized. Previous studies have demonstrated that ouabain, within the concentration range found naturally in the body (10 nmol/L), affects the polarity of epithelial cells and their intercellular contacts, such as tight junctions, adherens junctions, and gap junctional communication. This is achieved by activating signaling pathways involving cSrc and Erk1/2. To further investigate the effects of ouabain within the hormonally relevant concentration range (10 nmol/L), mRNA-seq, a high-throughput sequencing technique, was employed to identify differentially expressed transcripts. The discovery that the transcript encoding MYO9A was among the genes affected prompted an exploration of whether RhoA and its downstream effector ROCK were involved in the signaling pathways through which ouabain influences cell-to-cell contacts in epithelial cells. Supporting this hypothesis, this study reveals the following: (1) Ouabain increases the activation of RhoA. (2) Treatment with inhibitors of RhoA activation (Y27) and ROCK (C3) eliminates the enhancing effect of ouabain on the tight junction seal and intercellular communication via gap junctions. These findings further support the notion that ouabain acts as a hormone to emphasize the epithelial phenotype.

5.
PLoS One ; 18(1): e0279681, 2023.
Article in English | MEDLINE | ID: mdl-36701313

ABSTRACT

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Public health strategies to reduce viral transmission are based on widespread diagnostic testing to detect and isolate contagious patients. Several reverse transcription (RT)-PCR tests, along with other SARS-CoV-2 diagnostic assays, are available to attempt to cover the global demand. Loop-mediated isothermal amplification (LAMP) based methods have been established as rapid, accurate, point of care diagnostic tests for viral infections; hence, they represent an excellent alternative for SARS-CoV-2 detection. The aim of this study was to develop and describe molecular detection systems for SARS-CoV-2 based on RT-LAMP. Recombinant DNA polymerase from Bacillus stearothermophilus and thermostable engineered reverse transcriptase from Moloney Murine Leukemia Virus were expressed using a prokaryotic system and purified by fast protein liquid chromatography. These enzymes were used to set up fluorometric real time and colorimetric end-point RT-LAMP assays. Several reaction conditions were optimized such as reaction temperature, Tris-HCl concentration, and pH of the diagnostic tests. The key enzymes for RT-LAMP were purified and their enzymatic activity was determined. Standardized reaction conditions for both RT-LAMP assays were 65°C and a Tris-HCl-free buffer at pH 8.8. Colorimetric end-point RT-LAMP assay was successfully used for viral detection from clinical saliva samples with 100% sensitivity and 100% specificity compared to the results obtained by RT-qPCR based diagnostic protocols with Ct values until 30. The developed RT-LAMP diagnostic tests based on purified recombinant enzymes allowed a sensitive and specific detection of the nucleocapsid gene of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction , Diagnostic Tests, Routine , RNA, Viral/genetics , COVID-19 Testing
6.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269578

ABSTRACT

Citrus tristeza virus (CTV) is an important threat to the global citrus industry, causing severe economic losses worldwide. The disease management strategies are focused on vector control, tree culling, and the use of resistant varieties and rootstocks. Sweet orange (Citrus sinensis) trees showing either severe or mild CTV symptoms have been observed in orchards in Veracruz, Mexico, and were probably caused by different virus strains. To understand these symptomatic differences, transcriptomic analyses were conducted using asymptomatic trees. CTV was confirmed to be associated with infected plants, and mild and severe strains were successfully identified by a polymorphism in the coat protein (CP) encoding gene. RNA-Seq analysis revealed more than 900 significantly differentially expressed genes in response to mild and severe strains, with some overlapping genes. Importantly, multiple sequence reads corresponding to Citrus exocortis viroid and Hop stunt viroid were found in severe symptomatic and asymptomatic trees, but not in plants with mild symptoms. The differential gene expression profiling obtained in this work provides an overview of molecular behavior in naturally CTV-infected trees. This work may contribute to our understanding of citrus-virus interaction in more natural settings, which can help develop strategies for integrated crop management.


Subject(s)
Citrus sinensis/virology , Closterovirus/pathogenicity , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Viruses/pathogenicity , Viral Proteins/genetics , Citrus sinensis/genetics , Closterovirus/genetics , Disease Resistance , Gene Expression Regulation, Plant , Gene Expression Regulation, Viral , Mexico , Plant Diseases/genetics , Plant Diseases/virology , Plant Viruses/genetics , RNA-Seq , Virulence
7.
Front Plant Sci ; 13: 818046, 2022.
Article in English | MEDLINE | ID: mdl-35178061

ABSTRACT

The plant vasculature is a central organ for long-distance transport of nutrients and signaling molecules that coordinate vegetative and reproductive processes, and adaptation response mechanisms to biotic and abiotic stress. In angiosperms, the sieve elements are devoid of nuclei, thus depending on the companion cells for the synthesis of RNA and proteins, which constitute some of the systemic signals that coordinate these processes. Massive analysis approaches have identified proteins and RNAs that could function as long-range signals in the phloem translocation stream. The selective translocation of such molecules could occur as ribonucleoprotein complexes. A key molecule facilitating this movement in Cucurbitaceae is the phloem protein CmPP16, which can facilitate the movement of RNA and other proteins into the sieve tube. The CmPP16 ortholog in Citrus CsPP16 was characterized in silico to determine its potential capacity to associate with other mobile proteins and its enrichment in the vascular tissue. The systemic nature of CsPP16 was approached by evaluating its capacity to provide phloem-mobile properties to antimicrobial peptides (AMPs), important in the innate immune defense. The engineering of macromolecular trafficking in the vasculature demonstrated the capacity to mobilize translationally fused peptides into the phloem stream for long-distance transport. The translocation into the phloem of AMPs could mitigate the growth of Candidatus Liberibacter asiaticus, with important implications for crop defense; this system also opens the possibility of translocating other molecules to modulate traits, such as plant growth, defense, and plant productivity.

8.
J Virol Methods ; 302: 114466, 2022 04.
Article in English | MEDLINE | ID: mdl-35065084

ABSTRACT

In the present study, a droplet digital PCR assay was developed for detection of Tomato brown rugose fruit virus, a new Tobamovirus of tomato and other solanaceous plants, which expands the diagnostic strategies for this pathogen. Candidate reference DNA material was also obtained to be employed as positive control in tomato and pepper samples. Recombinant plasmids encode for ToBRFV coat protein (CP-ToBRFV) gene and Solanum lycopersicum GAPDH fragments, and CP-ToBRFV and Capsicum annuum GAPDH. To our knowledge, this is the first report of ToBRFV detection in tomato and pepper seeds using ddPCR.


Subject(s)
Solanum lycopersicum , Tobamovirus , Fruit , Plant Diseases , Polymerase Chain Reaction , Seeds , Tobamovirus/genetics
9.
Vaccines (Basel) ; 9(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34452053

ABSTRACT

The Receptor-Binding Domain (RBD) of the Spike (S) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has glycosylation sites which can limit the production of reliable antigens expressed in prokaryotic platforms, due to glycan-mediated evasion of the host immune response. However, protein regions without glycosylated residues capable of inducing neutralizing antibodies could be useful for antigen production in systems that do not carry the glycosylation machinery. To test this hypothesis, the potential antigens NG06 and NG19, located within the non-glycosylated S-RBD region, were selected and expressed in Escherichia coli, purified by FPLC and employed to determine their immunogenic potential through detection of antibodies in serum from immunized rabbits, mice, and COVID-19 patients. IgG antibodies from sera of COVID-19-recovered patients detected the recombinant antigens NG06 and NG19 (A450 nm = 0.80 ± 0.33; 1.13 ± 0.33; and 0.11 ± 0.08 for and negatives controls, respectively). Also, the purified antigens were able to raise polyclonal antibodies in animal models evoking a strong immune response with neutralizing activity in mice model. This research highlights the usefulness of antigens based on the non-N-glycosylated region of RBD from SARS-CoV-2 for candidate vaccine development.

10.
PeerJ ; 9: e11215, 2021.
Article in English | MEDLINE | ID: mdl-33954045

ABSTRACT

Fusarium kuroshium is a novel member of the Ambrosia Fusarium Clade (AFC) that has been recognized as one of the symbionts of the invasive Kuroshio shot hole borer, an Asian ambrosia beetle. This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. Despite the interest in this species, the molecular responses of both the host and F. kuroshium during the infection process and disease establishment remain unknown. In this work, we established an in vitro pathosystem using Hass avocado stems inoculated with F. kuroshium to investigate differential gene expression at 1, 4, 7 and 14 days post-inoculation. RNA-seq technology allowed us to obtain data from both the plant and the fungus, and the sequences obtained from both organisms were analyzed independently. The pathosystem established was able to mimic Fusarium dieback symptoms, such as carbohydrate exudation, necrosis, and vascular tissue discoloration. The results provide interesting evidence regarding the genes that may play roles in the avocado defense response to Fusarium dieback disease. The avocado data set comprised a coding sequence collection of 51,379 UniGenes, from which 2,403 (4.67%) were identified as differentially expressed. The global expression analysis showed that F. kuroshium responsive UniGenes can be clustered into six groups according to their expression profiles. The biologically relevant functional categories that were identified included photosynthesis as well as responses to stress, hormones, abscisic acid, and water deprivation. Additionally, processes such as oxidation-reduction, organization and biogenesis of the cell wall and polysaccharide metabolism were detected. Moreover, we identified orthologues of nucleotide-binding leucine-rich receptors, and their possible action mode was analyzed. In F. kuroshium, we identified 57 differentially expressed genes. Interestingly, the alcohol metabolic process biological category had the highest number of upregulated genes, and the enzyme group in this category may play an important role in the mechanisms of secondary metabolite detoxification. Hydrolytic enzymes, such as endoglucanases and a pectate lyase, were also identified, as well as some proteases. In conclusion, our research was conducted mainly to explain how the vascular tissue of a recognized host of the ambrosia complex responds during F. kuroshium infection since Fusarium dieback is an ambrosia beetle-vectored disease and many variables facilitate its establishment.

11.
J Biotechnol ; 285: 74-83, 2018 Nov 10.
Article in English | MEDLINE | ID: mdl-30194966

ABSTRACT

Citrus huanglongbing (HLB) is a devastating disease associated with Candidatus Liberibacter asiaticus spp. (CLas), a bacterium restricted to the sieve tube system of the phloem that is transmitted by the psyllid vector, Diaphorina citri. In this study, the human antimicrobial peptides, lysozyme and ß-defensin 2, were targeted to the vascular tissue of Mexican lime (Citrus x aurantifolia [Christm.] Swingle) by fusion to a phloem-restricted protein. Localized expression was achieved, via Agrobacterium tumefaciens-mediated transformation of the stem, which led to protein expression and mobilization within the vascular tissue of heterotrophic tissues. HLB-infected plants were monitored for 360 days. Lower bacteria titers were observed in plants expressing either ß-defensin 2, lysozyme, or the combination thereof, and these plants had increased photosynthesis, compared to untreated control trees. Thus, targeting of antimicrobial proteins to the vascular tissue was effective in decreasing CLas titer, and alleviating citrus greening symptoms. Based on these findings, this strategy could be used to effectively treat plants that are already infected with bacterial pathogens that reside in the phloem translocation stream.


Subject(s)
Citrus , Defensins , Muramidase , Plant Diseases/prevention & control , Plant Proteins , Rhizobiaceae , Agrobacterium/genetics , Citrus/genetics , Citrus/metabolism , Citrus/microbiology , Defensins/genetics , Defensins/pharmacology , Muramidase/genetics , Muramidase/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/pharmacology , Recombinant Fusion Proteins/pharmacology
12.
Genome Announc ; 5(35)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28860245

ABSTRACT

Here, we report the genome of Fusarium euwallaceae strain HFEW-16-IV-019, an isolate obtained from Kuroshio shot hole borer (a Euwallacea sp.). These beetles were collected in Tijuana, Mexico, from elm trees showing typical symptoms of Fusarium dieback. The final assembly consists of 287 scaffolds spanning 48,274,071 bp and 13,777 genes.

13.
Viruses ; 6(7): 2602-22, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-25004279

ABSTRACT

The causal agents of Citrus leprosis are viruses; however, extant diagnostic methods to identify them have failed to detect known viruses in orange, mandarin, lime and bitter orange trees with severe leprosis symptoms in Mexico, an important citrus producer. Using high throughput sequencing, a virus associated with citrus leprosis was identified, belonging to the proposed Dichorhavirus genus. The virus was termed Citrus Necrotic Spot Virus (CNSV) and contains two negative-strand RNA components; virions accumulate in the cytoplasm and are associated with plasmodesmata-channels interconnecting neighboring cells-suggesting a mode of spread within the plant. The present study provides insights into the nature of this pathogen and the corresponding plant response, which is likely similar to other pathogens that do not spread systemically in plants.


Subject(s)
Citrus/virology , Genome, Viral , Nucleocapsid/genetics , Plant Diseases/virology , Plant Viruses/genetics , RNA Viruses/genetics , Citrus/immunology , Fruit/immunology , Fruit/virology , Gene Expression Regulation, Viral , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Mexico , Nucleocapsid/ultrastructure , Phylogeny , Plant Cells/immunology , Plant Cells/virology , Plant Diseases/immunology , Plant Immunity , Plant Leaves/immunology , Plant Leaves/virology , Plant Viruses/classification , Plant Viruses/isolation & purification , Plant Viruses/ultrastructure , Plasmodesmata/immunology , Plasmodesmata/virology , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA Viruses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...