Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 22(12): 1269-1277, 2020.
Article in English | MEDLINE | ID: mdl-32449363

ABSTRACT

Bioremediation with genetically modified microalgae is becoming an alternative to remove metalloids and metals such as cadmium, a contaminant produced in industrial processes and found in domestic waste. Its removal is important in several countries including Mexico, where the San Luis Potosi region has elevated levels of it. We generated a construct with a synthetic gene for γ-glutamylcysteine synthetase and employed it in the chloroplast transformation of Chlamydomonas reinhardtii. In dose-response kinetics with media containing from 1 to 20 mg/L of cadmium, both the transplastomic clone and the wild-type strain grew similarly, but the former removed up to 32% more cadmium. While the growth of both decreased with higher concentrations of cadmium, the transplastomic clone removed 20 ± 9% more than the wild-type strain. Compared to the wild-type strain, in the transplastomic clone the activity of glutathione S-transferase and the intracellular glutathione increased up to 2.1 and 1.9 times, respectively, in media with 2.5 and 10 mg/mL of cadmium. While 20 mg/L of cadmium inhibited the growth of both, the transplastomic clone gradually duplicated. These results confirm the expression of the synthetic gene gshA in the transformed strain as revealed in its increased removal uptake and metabolic response.


Subject(s)
Chlamydomonas reinhardtii/genetics , Biodegradation, Environmental , Cadmium , Genes, Synthetic , Glutamate-Cysteine Ligase/genetics , Mexico
2.
Int J Phytoremediation ; 21(7): 617-623, 2019.
Article in English | MEDLINE | ID: mdl-30873857

ABSTRACT

Arsenic contamination of groundwater is a significant problem in countries like Mexico, where San Luis Potosi is among the regions registering severe levels of it. Bioremediation with microalgae capable to absorb and metabolize metals or metalloids like arsenic reduces their toxicity and is a cost-effective approach compared to physical-chemical processes. We evaluated the capability of Chlamydomonas reinhardtii to remove arsenate and compared it with an acr3-modified recombinant strain, which we produced by transforming the wild-type strain with Agrobacterium tumefaciens using the construct pARR1 including a synthetic, optimized acr3 gene from Pteris vittata, a hyper-accumulator of arsenic. We monitored the growth of both strains in media with arsenate, containing a standard or a 10-fold decreased amount of phosphate. Comparing both strains in media initially with 0.5, 1, and 1.5 mg/L of arsenate, the acr3-modified strain removed 1.5 to 3 times more arsenic than the wild-type strain. Moreover, the arsenic uptake rate increased 1.2 to 2.3 times when growing the acr3-modified strain in media with decreased phosphate, while the uptake rate for the wild-type strain scarcely changed under the same conditions. These results confirm the expression of the acr3 gene in C. reinhardtii and its potential application to remove arsenic.


Subject(s)
Arsenic , Chlamydomonas reinhardtii , Pteris , Biodegradation, Environmental , Mexico , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...