Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003635

ABSTRACT

Cyanide is a highly toxic substance present in wastewater from various industries. This study investigates the removal of cyanide species (CS) from aqueous solutions using the ZnTiO3/TiO2/H2O2/UVB system. ZnTiO3/TiO2 nanoparticles synthesized by the sol-gel method were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The adsorption capacity of nanoparticles was tested by varying the pH of the solution, adsorbent concentration, and contact time. The adsorption of CS on ZnTiO3 and TiO2 surfaces was verified by Density Functional Theory (DFT) calculations. Photocatalytic experiments were achieved under UVB irradiation (λ = 310 nm). The response surface methodology (RSM) was used to optimize the CS removal efficiency. The detoxification effect was evaluated by acute toxicity tests with brine shrimp. The theoretical results show that the adsorption of CS is energetically more favorable on the ZnTiO3 surface than on the TiO2 surface. The experimental results show that the system consisting of ZnTiO3/TiO2 (200 mg L-1), H2O2 (0.1%), and UVB light removes 99% of CS from aqueous solutions after 60 min and reduces the mortality of nauplii in 90% after 90 min. This system was reused in five consecutive cycles with a total loss of efficiency of 30%.


Subject(s)
Hydrogen Peroxide , Ultraviolet Rays , Cyanides , Titanium/chemistry , Water/chemistry
2.
Polymers (Basel) ; 15(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37376343

ABSTRACT

In this study, GP (geopolymer) and GTA (geopolymer/ZnTiO3/TiO2) geopolymeric materials were prepared from metakaolin (MK) and characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive X-rays (EDX), specific surface area (SSA), and point of zero charge (PZC). The adsorption capacity and photocatalytic activity of the compounds prepared in the form of pellets was determined by degradation of the methylene blue (MB) dye in batch reactors, at pH = 7.0 ± 0.2 and room temperature (20 °C). The results indicate that both compounds are highly efficient at adsorbing MB, with an average efficiency value of 98.5%. The Langmuir isotherm model and the pseudo second order kinetic model provided the best fits to the experimental data for both compounds. In the MB photodegradation experiments under UVB irradiation, GTA reached an efficiency of 93%, being higher than that achieved by GP (4%). Therefore, the incorporation of ZnTiO3/TiO2 in the geopolymeric matrix allowed GTA to achieve higher overall efficiency, by combining adsorption and photocatalysis, compared to the GP compound. The results indicate that the synthesized compounds could be used for up to five consecutive cycles for the removal of MB from wastewater through adsorption and/or photocatalysis processes.

3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835191

ABSTRACT

Cyanide is a highly toxic compound that can pose serious health problems to both humans and aquatic organisms. Therefore, the present comparative study focuses on the removal of total cyanide from aqueous solutions by photocatalytic adsorption and degradation methods using ZnTiO3 (ZTO), La/ZnTiO3 (La/ZTO), and Ce/ZnTiO3 (Ce/ZTO). The nanoparticles were synthesized by the sol-gel method and characterized by X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Diffuse reflectance spectroscopy (DRS), and Specific surface area (SSA). The adsorption equilibrium data were fitted to the Langmuir and Freundlich isotherm models. Adsorption kinetics were also evaluated using the pseudo-first-order and pseudo-second-order models and the intraparticle diffusion model. Likewise, the photodegradation of cyanide under simulated sunlight was investigated and the reusability of the synthesized nanoparticles for cyanide removal in aqueous systems was determined. The results demonstrated the effectiveness of doping with lanthanum (La) and cerium (Ce) to improve the adsorbent and photocatalytic properties of ZTO. In general, La/ZTO showed the maximum percentage of total cyanide removal (99.0%) followed by Ce/ZTO (97.0%) and ZTO (93.6%). Finally, based on the evidence of this study, a mechanism for the removal of total cyanide from aqueous solutions using the synthesized nanoparticles was proposed.


Subject(s)
Cerium , Water Pollutants, Chemical , Humans , Lanthanum , Photolysis , Cyanides , Adsorption , Water , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
4.
Nanomaterials (Basel) ; 12(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36144925

ABSTRACT

Theoretically, lanthanum can bond with surface oxygens of ZnTiO3 to form La-O-Ti bonds, resulting in the change of both the band structure and the electron state of the surface. To verify this statement, DFT calculations were performed using a model with a dispersed lanthanum atom on the surface (101) of ZnTiO3. The negative heat segmentation values obtained suggest that the incorporation of La on the surface of ZnTiO3 is thermodynamically stable. The bandgap energy value of La/ZnTiO3 (2.92 eV) was lower than that of ZnTiO3 (3.16 eV). TDOS showed that the conduction band (CB) and the valence band (VB) energy levels of La/ZnTiO3 are denser than those of ZnTiO3 due to the participation of hybrid levels composed mainly of O2p and La5d orbitals. From the PDOSs, Bader's charge analysis, and ELF function, it was established that the La-O bond is polar covalent. MB adsorption on La/ZnTiO3 (-200 kJ/mol) was more favorable than on ZnTiO3 (-85 kJ/mol). From the evidence of this study, it is proposed that the MB molecule first is adsorbed on the surface of La/ZnTiO3, and then the electrons in the VB of La/ZnTiO3 are photoexcited to hybrid levels, and finally, the MB molecule oxidizes into smaller molecules.

5.
Phys Rev Lett ; 100(10): 107402, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18352229

ABSTRACT

A quantum-dynamical analysis of exciton dissociation at polymer heterojunctions is presented, using a hierarchical electron-phonon model parametrized for three electronic states and 28 vibrational modes. Two representative interfacial configurations are considered, both of which exhibit an ultrafast exciton decay. The efficiency of the process depends critically on the presence of intermediate bridge states, and on the dynamical interplay of high- vs low-frequency phonon modes. The ultrafast, highly nonequilibrium dynamics is consistent with time-resolved spectroscopic observations.

6.
J Phys Chem B ; 112(2): 495-506, 2008 Jan 17.
Article in English | MEDLINE | ID: mdl-18081341

ABSTRACT

We present a molecular-level, quantum dynamical analysis of phonon-driven exciton dissociation at polymer heterojunctions, using a linear vibronic coupling model parametrized for 3 electronic states and 24 vibrational modes. Quantum dynamical simulations were carried out using the multiconfiguration time-dependent Hartree method. In this study, which significantly extends the two-state model of Tamura et al. (Tamura, H.; Bittner, E. R.; Burghardt, I. J. Chem. Phys. 2007, 126, 021103), we focus on the role of bridge states, which can mediate the decay of the photogenerated exciton and possibly interfere with the direct transition toward an interfacial charge-separated state. Both the direct and bridge-mediated pathways are found to depend critically on the dynamical interplay of high-frequency C=C stretch modes and low-frequency ring-torsional modes. The dynamical mechanism is interpreted in terms of a hierarchical electron-phonon model, leading to the identification of generalized reaction coordinates for the nonadiabatic process. Variation of the vibronic coupling model parameters in a realistic range provides evidence that the direct exciton decay pathway is not dynamically robust, and bridge-mediated pathways can become dominant. The ultrafast, coherent dynamics is of pronounced nonequilibrium character and cannot be modeled by conventional kinetic equations. The predicted femtosecond to picosecond decay times are consistent with time-resolved spectroscopic observations.

7.
J Chem Phys ; 126(18): 181101, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17508783

ABSTRACT

Polyfluorene-based polymer blends have been utilized in the development of optoelectronic devices. The constituent copolymers are chemically designed to facilitate more efficient electron/hole mobility, thereby enhancing control over exciton formation and dissociation. When appropriate pairs of these are blended together, intermolecular charged-particle localizations are induced, leading to significant intermolecular charge-transfer character and luminescence that exhibit some sensitivity to their interfacial orientation. The authors report on a time-dependent density functional theory quantum chemical investigation of the relevant excited states of the polymer blend poly[9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine]/poly(9,9-dioctylfluorene-co-benzothiadiazole. They show that the calculated excited states generally agree with experimental observations although there is a consistent underestimation of the charge-transfer states. Further, they show sensitivity to lateral shifts in interfacial stacking. Finally, solvation with a low dielectric solvent greatly stabilizes the charge-transfer states.

8.
J Phys Chem B ; 110(42): 21001-9, 2006 Oct 26.
Article in English | MEDLINE | ID: mdl-17048918

ABSTRACT

We present a theoretical investigation on various semiconducting materials that exhibit photovoltaic and photoluminecent properties. Our focus is on the relaxation dynamics that occur upon photoexcitation of a couple of type II donor-acceptor heterojunction systems. In addition to the diabatic approach our two-band exciton model employs to study the phonon-assisted relaxations, we adopt the Marcus-Hush semiclassical method to incorporate lattice reorganization. This enables us to look at the state-to-state interconversions from the relaxed excited-state configurations in model polymer blends of poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) with F8BT. Our results stress the significance of vibrational relaxation in the state-to-state relaxation. Furthermore, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, we show that the regeneration of the optically active lowest excitonic state in TFB:F8BT is possible via the existence of a steady state.

9.
J Chem Phys ; 122(21): 214719, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15974774

ABSTRACT

In this paper we consider the essential electronic excited states in parallel chains of semiconducting polymers that are currently being explored for photovoltaic and light-emitting diode applications. In particular, we focus upon various type II donor-acceptor heterojunctions and explore the relation between the exciton binding energy to the band offset in determining the device characteristic of a particular type II heterojunction material. As a general rule, when the exciton binding energy is greater than the band offset at the heterojunction, the exciton will remain the lowest-energy excited state and the junction will make an efficient light-emitting diode. On the other hand, if the offset is greater than the exciton binding energy, either the electron or hole can be transferred from one chain to the other. Here we use a two-band exciton to predict the vibronic absorption and emission spectra of model polymer heterojunctions. Our results underscore the role of vibrational relaxation and suggest that intersystem crossings may play some part in the formation of charge-transfer states following photoexcitation in certain cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...