Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 18: 1394478, 2024.
Article in English | MEDLINE | ID: mdl-38903599

ABSTRACT

VPS13A disease and Huntington's disease (HD) are two basal ganglia disorders that may be difficult to distinguish clinically because they have similar symptoms, neuropathological features, and cellular dysfunctions with selective degeneration of the medium spiny neurons of the striatum. However, their etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene leading to a lack of protein in the cells, while HD is due to an expansion of CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of mutant Htt. Considering the similarities of both diseases regarding the selective degeneration of striatal medium spiny neurons, the involvement of VPS13A in the molecular mechanisms of HD pathophysiology cannot be discarded. We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A levels in the human cortex and putamen nucleus; and compared data on mutant Htt-induced changes in VPS13A expression from differential expression datasets. We found that VPS13A brain distribution or expression was unaltered in most situations with a decrease in the putamen of HD patients and small mRNA changes in the striatum and cerebellum of HD mice. We concluded that the selective susceptibility of the striatum in VPS13A disease and HD may be a consequence of disturbances in different cellular processes with convergent molecular mechanisms already to be elucidated.

2.
Neurobiol Dis ; 187: 106292, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37714309

ABSTRACT

Chorea-acanthocytosis (ChAc) is an inherited neurodegenerative movement disorder caused by VPS13A gene mutations leading to the absence of protein expression. The striatum is the most affected brain region in ChAc patients. However, the study of the VPS13A function in the brain has been poorly addressed. Here we generated a VPS13A knockdown (KD) model and aimed to elucidate the contribution of VPS13A to synaptic plasticity and neuronal communication in the corticostriatal circuit. First, we infected primary cortical neurons with miR30-shRNA against VPS13A and analyzed its effects on neuronal plasticity. VPS13A-KD neurons showed a higher degree of branching than controls, accompanied by decreased BDNF and PSD-95 levels, indicative of synaptic alterations. We then injected AAV-KD bilaterally in the frontal cortex and two different regions of the striatum of mice and analyzed the effects of VPS13A-KD on animal behavior and synaptic plasticity. VPS13A-KD mice showed modification of the locomotor behavior pattern, with increased exploratory behavior and hyperlocomotion. Corticostriatal dysfunction in VPS13A-KD mice was evidenced by impaired striatal long-term depression (LTD) after stimulation of cortical afferents, which was partially recovered by BDNF administration. VPS13A-KD did not lead to neuronal loss in the cortex or the striatum but induced a decrease in the neuronal release of CX3CL1 and triggered a microglial reaction, especially in the striatum. Notably, CX3CL1 administration partially restored the impaired corticostriatal LTD in VPS13A-KD mice. Our results unveil the involvement of VPS13A in neuronal connectivity modifying BDNF and CX3CL1 release. Moreover, the involvement of VPS13A in synaptic plasticity and motor behavior provides key information to further understand not only ChAc pathophysiology but also other neurological disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...