Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Exp Neurol ; 349: 113938, 2022 03.
Article in English | MEDLINE | ID: mdl-34863680

ABSTRACT

Blast-induced neurotrauma (BINT) is not only a signature injury to soldiers in combat field and training facilities but may also a growing concern in civilian population due to recent increases in the use of improvised explosives by insurgent groups. Unlike moderate or severe BINT, repeated low-level blast (rLLB) is different in its etiology as well as pathology. Due to the constant use of heavy weaponry as part of combat readiness, rLLB usually occurs in service members undergoing training as part of combat readiness. rLLB does not display overt pathological symptoms; however, earlier studies report chronic neurocognitive changes such as altered mood, irritability, and aggressive behavior, all of which may be caused by subtle neuropathological manifestations. Current animal models of rLLB for investigation of neurobehavioral and neuropathological alterations have not been adequate and do not sufficiently represent rLLB conditions. Here, we developed a rat model of rLLB by applying controlled low-level blast pressures (<10 psi) repeated successively five times to mimic the pressures experienced by service members. Using this model, we assessed anxiety-like symptoms, motor coordination, and short-term memory as a function of time. We also examined levels of superoxide-producing enzyme NADPH oxidase, microglial activation, and reactive astrocytosis as factors likely contributing to these neurobehavioral changes. Animals exposed to rLLB displayed acute and chronic anxiety-like symptoms, motor and short-term memory impairments. These changes were paralleled by increased microglial activation and reactive astrocytosis. Conversely, animals exposed to a single low-level blast did not display significant changes. Collectively, this study demonstrates that, unlike a single low-level blast, rLLB exerts a cumulative impact on different brain regions and produces chronic neuropathological changes in so doing, may be responsible for neurobehavioral alterations.


Subject(s)
Blast Injuries/pathology , Blast Injuries/psychology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Animals , Anxiety/psychology , Chronic Disease , Disease Models, Animal , Gliosis , Macrophage Activation , Male , Memory Disorders/etiology , Memory Disorders/psychology , Memory, Short-Term , Microglia/pathology , NADPH Oxidase 1/metabolism , Psychomotor Performance , Rats , Rats, Sprague-Dawley , Recurrence
2.
Metabolomics ; 16(3): 39, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32166461

ABSTRACT

INTRODUCTION: Blast-induced neurotrauma (BINT) has been recognized as the common mode of traumatic brain injury amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from this laboratory have identified three major pathological events following BINT which include blood brain barrier disruption the earliest event, followed by oxidative stress and neuroinflammation as secondary events occurring a few hours following blast. OBJECTIVES: Our recent studies have also identified an increase in oxidative stress mediated by the activation of superoxide producing enzyme NADPH oxidase (NOX) in different brain regions at varying levels with neurons displaying higher oxidative stress (NOX activation) compared to any other neural cell. Since neurons have higher energy demands in brain and are more prone to oxidative damage, this study evaluated the effect of oxidative stress on blast-blast induced changes in metabolomics profiles in different brain regions. METHODS: Animals were exposed to mild/moderate blast injury (180 kPa) and examined the metabolites of energy metabolism, amino acid metabolism as well as the profiles of plasma membrane metabolites in different brain regions at different time points (24 h, 3 day and 7 day) after blast using 1H NMR spectroscopy. Effect of apocynin, an inhibitor of superoxide producing enzyme NADPH oxidase on cerebral metabalomics profiles was also examined. RESULTS: Several metabolomic profile changes were observed in frontal cortex and hippocampus with concomitant decrease in energy metabolism. In addition, glutamate/glutamine and other amino acid metabolism as well as metabolites involved in plasma membrane integrity were also altered. Hippocampus appears metabolically more vulnerable than the frontal cortex. A post-treatment of animals with apocynin, an inhibitor of NOX activation significantly prevented the changes in metabolite profiles. CONCLUSION: Together these studies indicate that blast injury reduces both cerebral energy and neurotransmitter amino acid metabolism and that oxidative stress contributes to these processes. Thus, strategies aimed at reducing oxidative stress can have a therapeutic benefit in mitigating metabolic changes following BINT.


Subject(s)
Blast Injuries/metabolism , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Oxidative Stress , Acetophenones , Animals , Blast Injuries/pathology , Brain Injuries, Traumatic/chemically induced , Brain Injuries, Traumatic/pathology , Male , Metabolomics , Rats , Rats, Sprague-Dawley
3.
Sci Rep ; 9(1): 7717, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118451

ABSTRACT

Blast-induced traumatic brain injury (bTBI) has been recognized as the common mode of neurotrauma amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from our laboratory have identified enhanced blood-brain barrier (BBB) permeability as a significant, sub-acute (four hours post-blast) pathological change in bTBI. We also found that NADPH oxidase (NOX)-mediated oxidative stress occurs at the same time post-blast when the BBB permeability changes. We therefore hypothesized that oxidative stress is a major causative factor in the BBB breakdown in the sub-acute stages. This work therefore examined the role of NOX1 and its downstream effects on BBB permeability in the frontal cortex (a region previously shown to be the most vulnerable) immediately and four hours post-blast exposure. Rats were injured by primary blast waves in a compressed gas-driven shock tube at 180 kPa and the BBB integrity was assessed by extravasation of Evans blue and changes in tight junction proteins (TJPs) as well as translocation of macromolecules from blood to brain and vice versa. NOX1 abundance was also assessed in neurovascular endothelial cells. Blast injury resulted in increased extravasation and reduced levels of TJPs in tissues consistent with our previous observations. NOX1 levels were significantly increased in endothelial cells followed by increased superoxide production within 4 hours of blast. Blast injury also increased the levels/activation of matrix metalloproteinase 3 and 9. To test the role of oxidative stress, rats were administered apocynin, which is known to inhibit the assembly of NOX subunits and arrests its function. We found apocynin completely inhibited dye extravasation as well as restored TJP levels to that of controls and reduced matrix metalloproteinase activation in the sub-acute stages following blast. Together these data strongly suggest that NOX-mediated oxidative stress contributes to enhanced BBB permeability in bTBI through a pathway involving increased matrix metalloproteinase activation.


Subject(s)
Blast Injuries/physiopathology , Blood-Brain Barrier , Brain Injuries, Traumatic/physiopathology , NADPH Oxidase 1/physiology , Oxidative Stress , Acetophenones/pharmacology , Acetophenones/therapeutic use , Albumins/cerebrospinal fluid , Animals , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/cerebrospinal fluid , Capillary Permeability , Endothelial Cells/enzymology , Enzyme Activation , Enzyme Induction , Frontal Lobe/blood supply , Frontal Lobe/injuries , Glial Fibrillary Acidic Protein/blood , Matrix Metalloproteinase 3/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Rats , Serum Albumin/analysis , Superoxides/metabolism , Tight Junction Proteins/biosynthesis
4.
Mol Neurobiol ; 56(7): 5202-5228, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30554385

ABSTRACT

Microglia have been implicated as a key mediator of chronic inflammation following traumatic brain injury (TBI). The animal models of TBI vary significantly based on the type of brain injury (focal versus diffuse). This has made it extremely difficult to assess the role of microglia and the window of microglia activation. Hence, the focus of this review is to summarize the time course of microglia activation in various animal models of TBI. The review explores the repertoire of secondary injury mechanisms such as aberrant neurotransmitter release, oxidative stress, blood-brain barrier disruption, and production of pro-inflammatory cytokines that follow microglia activation. Since receptors act as sensors for activation, we highlight certain microglia receptors that have been implicated in TBI pathology, including fractalkine receptor (CX3CR1), purinergic receptor (P2Y12R), Toll-like receptor (TLR4), scavenger receptors, tumor necrosis factor receptor (TNF-1R), interleukin receptor (IL-1R), complement receptors, and peroxisome proliferator-activated receptor (PPAR). In addition to describing their downstream signaling pathways in TBI, we describe the functional consequences of their activation and the implication in behavioral outcomes. Taken together, this review will provide a holistic view of the role of microglia and its receptors in TBI based on animal studies.


Subject(s)
Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Microglia/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Receptors, Cell Surface/metabolism , Animals , Brain Injuries, Traumatic/pathology , Humans , Microglia/pathology
5.
Sci Rep ; 8(1): 8681, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29875451

ABSTRACT

Blast-induced traumatic brain injury (bTBI) is a "signature wound" in soldiers during training and in combat and has also become a major cause of morbidity in civilians due to increased insurgency. This work examines the role of blood-brain barrier (BBB) disruption as a result of both primary biomechanical and secondary biochemical injury mechanisms in bTBI. Extravasation of sodium fluorescein (NaF) and Evans blue (EB) tracers were used to demonstrate that compromise of the BBB occurs immediately following shock loading, increases in intensity up to 4 hours and returns back to normal in 24 hours. This BBB compromise occurs in multiple regions of the brain in the anterior-posterior direction of the shock wave, with maximum extravasation seen in the frontal cortex. Compromise of the BBB is confirmed by (a) extravasation of tracers into the brain, (b) quantification of tight-junction proteins (TJPs) in the brain and the blood, and (c) tracking specific blood-borne molecules into the brain and brain-specific proteins into the blood. Taken together, this work demonstrates that the BBB compromise occurs as a part of initial biomechanical loading and is a function of increasing blast overpressures.


Subject(s)
Blast Injuries/physiopathology , Blood-Brain Barrier/physiopathology , Brain Injuries, Traumatic/physiopathology , Capillary Permeability , Animals , Blast Injuries/metabolism , Blast Injuries/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain/physiopathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Male , Rats, Sprague-Dawley
6.
J Neurotrauma ; 35(17): 2077-2090, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29648986

ABSTRACT

Blast-induced traumatic brain injury (bTBI) is a leading cause of morbidity in soldiers on the battlefield and in training sites with long-term neurological and psychological pathologies. Previous studies from our laboratory demonstrated activation of oxidative stress pathways after blast injury, but their distribution among different brain regions and their impact on the pathogenesis of bTBI have not been explored. The present study examined the protein expression of two isoforms: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 (NOX1, NOX2), corresponding superoxide production, a downstream event of NOX activation, and the extent of lipid peroxidation adducts of 4-hydroxynonenal (4HNE) to a range of proteins. Brain injury was evaluated 4 h after the shock-wave exposure, and immunofluorescence signal quantification was performed in different brain regions. Expression of NOX isoforms displayed a differential increase in various brain regions: in hippocampus and thalamus, there was the highest increase of NOX1, whereas in the frontal cortex, there was the highest increase of NOX2 expression. Cell-specific analysis of changes in NOX expression with respect to corresponding controls revealed that blast resulted in a higher increase of NOX1 and NOX 2 levels in neurons compared with astrocytes and microglia. Blast exposure also resulted in increased superoxide levels in different brain regions, and such changes were reflected in 4HNE protein adduct formation. Collectively, this study demonstrates that primary blast TBI induces upregulation of NADPH oxidase isoforms in different regions of the brain parenchyma and that neurons appear to be at higher risk for oxidative damage compared with other neural cells.


Subject(s)
Blast Injuries/metabolism , Brain Injuries, Traumatic/metabolism , NADPH Oxidases/biosynthesis , Animals , Astrocytes/metabolism , Brain Chemistry , Cerebellum/metabolism , Hippocampus/metabolism , Isoenzymes , Lipid Peroxidation , Male , NADPH Oxidase 1/biosynthesis , NADPH Oxidase 1/genetics , NADPH Oxidase 2/biosynthesis , NADPH Oxidase 2/genetics , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Superoxides/metabolism , Thalamus/metabolism
7.
Ann Neurol ; 80(6): 909-923, 2016 12.
Article in English | MEDLINE | ID: mdl-27804148

ABSTRACT

OBJECTIVE: Juvenile neuronal ceroid lipofuscinosis (JNCL), or juvenile Batten disease, is a pediatric lysosomal storage disease caused by autosomal recessive mutations in CLN3, typified by blindness, seizures, progressive cognitive and motor decline, and premature death. Currently, there is no treatment for JNCL that slows disease progression, which highlights the need to explore novel strategies to extend the survival and quality of life of afflicted children. Cyclic adenosine monophosphate (cAMP) is a second messenger with pleiotropic effects, including regulating neuroinflammation and neuronal survival. Here we investigated whether 3 phosphodiesterase-4 (PDE4) inhibitors (rolipram, roflumilast, and PF-06266047) could mitigate behavioral deficits and cell-specific pathology in the Cln3Δex7/8 mouse model of JNCL. METHODS: In a randomized, blinded study, wild-type (WT) and Cln3Δex7/8 mice received PDE4 inhibitors daily beginning at 1 or 3 months of age and continuing for 6 to 9 months, with motor deficits assessed by accelerating rotarod testing. The effect of PDE4 inhibitors on cAMP levels, astrocyte and microglial activation (glial fibrillary acidic protein and CD68, respectively), lysosomal pathology (lysosomal-associated membrane protein 1), and astrocyte glutamate transporter expression (glutamate/aspartate transporter) were also examined in WT and Cln3Δex7/8 animals. RESULTS: cAMP levels were significantly reduced in the Cln3Δex7/8 brain, and were restored by PF-06266047. PDE4 inhibitors significantly improved motor function in Cln3Δex7/8 mice, attenuated glial activation and lysosomal pathology, and restored glutamate transporter expression to levels observed in WT animals, with no evidence of toxicity as revealed by blood chemistry analysis. INTERPRETATION: These studies reveal neuroprotective effects for PDE4 inhibitors in Cln3Δex7/8 mice and support their therapeutic potential in JNCL patients. Ann Neurol 2016;80:909-923.


Subject(s)
Neuronal Ceroid-Lipofuscinoses/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Amino Acid Transport System X-AG/biosynthesis , Aminopyridines/therapeutic use , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Benzamides/therapeutic use , Brain/drug effects , Brain/metabolism , Cyclic AMP/metabolism , Cyclopropanes/therapeutic use , Disease Models, Animal , Gene Knock-In Techniques , Glial Fibrillary Acidic Protein/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Male , Membrane Glycoproteins/genetics , Mice , Molecular Chaperones/genetics , Motor Skills/drug effects , Neuronal Ceroid-Lipofuscinoses/genetics , Neuroprotective Agents/pharmacology , Rolipram/therapeutic use , Rotarod Performance Test
8.
Clin Exp Neuroimmunol ; 6(3): 245-263, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26543505

ABSTRACT

Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.

9.
J Clin Exp Hepatol ; 5(Suppl 1): S21-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26041953

ABSTRACT

Hepatic encephalopathy (HE) is a major neurological complication of severe liver disease that presents in acute and chronic forms. While elevated brain ammonia level is known to be a major etiological factor in this disorder, recent studies have shown a significant role of neuroinflammation in the pathogenesis of both acute and chronic HE. This review summarizes the involvement of ammonia in the activation of microglia, as well as the means by which ammonia triggers inflammatory responses in these cells. Additionally, the role of ammonia in stimulating inflammatory events in brain endothelial cells (ECs), likely through the activation of the toll-like receptor-4 and the associated production of cytokines, as well as the stimulation of various inflammatory factors in ECs and in astrocytes, are discussed. This review also summarizes the inflammatory mechanisms by which activation of ECs and microglia impact on astrocytes leading to their dysfunction, ultimately contributing to astrocyte swelling/brain edema in acute HE. The role of microglial activation and its contribution to the progression of neurobehavioral abnormalities in chronic HE are also briefly presented. We posit that a better understanding of the inflammatory events associated with acute and chronic HE will uncover novel therapeutic targets useful in the treatment of patients afflicted with HE.

10.
Glia ; 63(3): 365-82, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25297978

ABSTRACT

The expression of glutaminase in glial cells has been a controversial issue and matter of debate for many years. Actually, glutaminase is essentially considered as a neuronal marker in brain. Astrocytes are endowed with efficient and high capacity transport systems to recapture synaptic glutamate which seems to be consistent with the absence of glutaminase in these glial cells. In this work, a comprehensive study was devised to elucidate expression of glutaminase in neuroglia and, more concretely, in astrocytes. Immunocytochemistry in rat and human brain tissues employing isoform-specific antibodies revealed expression of both Gls and Gls2 glutaminase isozymes in glutamatergic and GABAergic neuronal populations as well as in astrocytes. Nevertheless, there was a different subcellular distribution: Gls isoform was always present in mitochondria while Gls2 appeared in two different locations, mitochondria and nucleus. Confocal microscopy and double immunofluorescence labeling in cultured astrocytes confirmed the same pattern previously seen in brain tissue samples. Astrocytic glutaminase expression was also assessed at the mRNA level, real-time quantitative RT-PCR detected transcripts of four glutaminase isozymes but with marked differences on their absolute copy number: the predominance of Gls isoforms over Gls2 transcripts was remarkable (ratio of 144:1). Finally, we proved that astrocytic glutaminase proteins possess enzymatic activity by in situ activity staining: concrete populations of astrocytes were labeled in the cortex, cerebellum and hippocampus of rat brain demonstrating functional catalytic activity. These results are relevant for the stoichiometry of the Glu/Gln cycle at the tripartite synapse and suggest novel functions for these classical metabolic enzymes.


Subject(s)
Astrocytes/enzymology , Brain/enzymology , Glutaminase/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Glutamic Acid/metabolism , Humans , Isoenzymes/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Mitochondria/metabolism , Neurons/metabolism , RNA, Messenger/metabolism , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/metabolism
11.
J Neurochem ; 131(3): 333-47, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25040426

ABSTRACT

Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH4Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over-expressed, reversed (by approx 75%) the reduction in synaptic proteins. NF-kB = nuclear factor kappa B; PSD95 = post-synaptic density protein 95; ONS = oxidative/nitrative stress.


Subject(s)
Ammonia/toxicity , Astrocytes/drug effects , Astrocytes/metabolism , Synapses/drug effects , Synapses/metabolism , Thrombospondin 1/metabolism , Ammonia/metabolism , Animals , Antioxidants/pharmacology , Female , Hepatic Encephalopathy/metabolism , NF-kappa B/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Pregnancy , Proto-Oncogene Proteins c-myc/pharmacology , Rats , Synaptophysin/metabolism , Tubulin/metabolism
12.
Metab Brain Dis ; 29(4): 927-36, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24567229

ABSTRACT

Brain edema and associated increase in intracranial pressure continue to be lethal complications of acute liver failure (ALF). Abundant evidence suggests that the edema in ALF is largely cytotoxic brought about by swelling of astrocytes. Elevated blood and brain ammonia levels have been strongly implicated in the development of the brain edema. Additionally, inflammation and sepsis have been shown to contribute to the astrocyte swelling/brain edema in the setting of ALF. We posit that ammonia initiates a number of signaling events, including oxidative/nitrative stress (ONS), the mitochondrial permeability transition (mPT), activation of the transcription factor (NF-κB) and signaling kinases, all of which have been shown to contribute to the mechanism of astrocyte swelling. All of these factors also impact ion-transporters, including Na(+), K(+), Cl(-) cotransporter and the sulfonylurea receptor 1, as well as the water channel protein aquaporin-4 resulting in a perturbation of cellular ion and water homeostasis, ultimately resulting in astrocyte swelling/brain edema. All of these events are also potentiated by inflammation. This article reviews contemporary knowledge regarding mechanisms of astrocyte swelling/brain edema formation which hopefully will facilitate the identification of therapeutic targets capable of mitigating the brain edema associated with ALF.


Subject(s)
Brain Edema/etiology , Liver Failure/complications , Acute Disease , Ammonia/metabolism , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Body Water/metabolism , Brain Edema/physiopathology , Cell Size , Confounding Factors, Epidemiologic , Homeostasis , Humans , Infections/complications , Inflammation , Intracranial Hypertension/etiology , Intracranial Hypertension/physiopathology , Ion Transport/physiology , Liver Failure/chemically induced , Liver Failure/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , Nitrosation , Oxidative Stress , Research Design
13.
Neurobiol Dis ; 63: 222-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24321433

ABSTRACT

Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF.


Subject(s)
Aquaporin 4/deficiency , Brain Diseases/etiology , Brain Edema/etiology , Gene Expression Regulation/genetics , Liver Failure, Acute/complications , Acetaminophen/toxicity , Analysis of Variance , Animals , Aquaporin 4/genetics , Brain Diseases/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Glucose Transporter Type 1/metabolism , Mice , Mice, Transgenic , Thioacetamide/toxicity , Time Factors
14.
Neurochem Res ; 39(3): 593-8, 2014.
Article in English | MEDLINE | ID: mdl-23277414

ABSTRACT

Hepatic encephalopathy (HE) is major neuropsychiatric disorder occurring in patients with severe liver disease and ammonia is generally considered to represent the major toxin responsible for this condition. Ammonia in brain is chiefly metabolized ("detoxified") to glutamine in astrocytes due to predominant localization of glutamine synthetase in these cells. While glutamine has long been considered innocuous, a deleterious role more recently has been attributed to this amino acid. This article reviews the mechanisms by which glutamine contributes to the pathogenesis of HE, how glutamine is transported into mitochondria and subsequently hydrolyzed leading to high levels of ammonia, the latter triggering oxidative and nitrative stress, the mitochondrial permeability transition and mitochondrial injury, a sequence of events we have collectively termed as the Trojan horse hypothesis of hepatic encephalopathy.


Subject(s)
Glutamine/metabolism , Hepatic Encephalopathy/metabolism , Ammonia/metabolism , Animals , Astrocytes/metabolism , Humans , Mitochondria/metabolism , Stress, Physiological
15.
J Neuropathol Exp Neurol ; 72(8): 735-44, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23860027

ABSTRACT

Among the consequences of Alzheimer disease are disturbances in synaptic integrity that ultimately lead to impaired cognitive functions. Thrombospondins are extracellular matrix proteins that, in the CNS, are predominantly produced by astrocytes and have been implicated in synaptogenesis. This study examined the effects of amyloid-ß (Aß(1-42); Aß) peptide on intracellular and extracellular levels of thrombospondin 1 (TSP-1) in cultured astrocytes. Amyloid-ß caused a significant (1- to 3-fold) increase in astrocytic intracellular levels of TSP-1 (increased retention) that was associated with a reduction of its release from astrocytes. Because Aß is known to induce oxidative stress in astrocytes, we examined the effects of the antioxidants tempol and apocynin on astrocytic TSP-1 levels and release. Treatment of Aß-exposed astrocyte cultures with antioxidants significantly diminished its cellular retention and stimulated its release. Furthermore, the addition of conditioned media derived from Aß-treated cultured astrocytes that contained a reduced TSP-1 content resulted in a significant loss of synaptophysin and PSD95 in cultured neurons. These findings suggest that Aß-mediated reduction in astrocytic TSP-1 release, possibly related to oxidative stress, contributes to the loss of synaptophysin in neurons. Strategies aimed at enhancing the astrocytic release of TSP-1 may have a therapeutic benefit in Alzheimer disease.


Subject(s)
Amyloid beta-Peptides/pharmacology , Astrocytes/drug effects , Gene Expression Regulation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Peptide Fragments/pharmacology , Synaptophysin/metabolism , Thrombospondin 1/metabolism , Animals , Animals, Newborn , Cell Survival/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Culture Media, Conditioned/chemistry , Disks Large Homolog 4 Protein , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , NADPH Oxidases/metabolism , Neurons/drug effects , Neurons/metabolism , RNA, Messenger/metabolism , Rats , Thrombospondin 1/genetics , Time Factors
16.
Neurochem Int ; 61(4): 575-80, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22285152

ABSTRACT

Hepatic encephalopathy (HE) is the major neurological disorder associated with liver disease. It presents in chronic and acute forms, and astrocytes are the major neural cells involved. While the principal etiological factor in the pathogenesis of HE is increased levels of blood and brain ammonia, glutamine, a byproduct of ammonia metabolism, has also been implicated in its pathogenesis. This article reviews the current status of glutamine in the pathogenesis of HE, particularly its involvement in some of the events triggered by ammonia, including mitochondrial dysfunction, generation of oxidative stress, and alterations in signaling mechanisms, including activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB). Mechanisms by which glutamine contributes to astrocyte swelling/brain edema associated with acute liver failure (ALF) will also be described.


Subject(s)
Glutamine/metabolism , Hepatic Encephalopathy/metabolism , Acute Disease , Brain/metabolism , Humans , Oxidative Stress , Signal Transduction
17.
Neurochem Int ; 60(7): 697-706, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21989389

ABSTRACT

One proposed mechanism for acute and chronic hepatic encephalopathy (HE) is a disturbance in cerebral energy metabolism. It also reviews the current status of this mechanism in both acute and chronic HE, as well as in other hyperammonemic disorders. It also reviews abnormalities in glycolysis, lactate metabolism, citric acid cycle, and oxidative phosphorylation as well as associated energy impairment. Additionally, the role of mitochondrial permeability transition (mPT), a recently established factor in the pathogenesis of HE and hyperammonemia, is emphasized. Energy failure appears to be an important pathogenetic component of both acute and chronic HE and a potential target for therapy.


Subject(s)
Brain/metabolism , Energy Metabolism , Hepatic Encephalopathy/metabolism , Mitochondria/physiology , Acute Disease , Ammonia/metabolism , Chronic Disease , Citric Acid Cycle , Glycolysis , Humans , Lactic Acid/metabolism , Nitrosation , Oxidative Phosphorylation , Oxidative Stress , Permeability
18.
J Neurosci Res ; 89(12): 2028-40, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21748779

ABSTRACT

Hepatic encephalopathy (HE) is the major neurological complication occurring in patients with acute and chronic liver failure. Elevated levels of blood and brain ammonia are characteristic of HE, and astrocytes are the primary target of ammonia toxicity. In addition to ammonia, recent studies suggest that inflammation and associated cytokines (CKs) also contribute to the pathogenesis of HE. It was previously established that ammonia induces the mitochondrial permeability transition (mPT) in cultured astrocytes. As CKs have been shown to cause mitochondrial dysfunction in other conditions, we examined whether CKs induce the mPT in cultured astrocytes. Cultures treated with tumor necrosis factor-α, interleukin-1ß, interleukin-6, and interferon-γ, individually or in a mixture, resulted in the induction of the mPT in a time-dependent manner. Simultaneous treatment of cultures with a mixture of CKs and ammonia showed a marked additive effect on the mPT. As oxidative stress (OS) is known to induce the mPT, so we examined the effect of CKs and ammonia on hemeoxygenase-1 (HO-1) protein expression, a marker of OS. Such treatment displayed a synergistic effect in the upregulation of HO-1. Antioxidants significantly blocked the additive effects on the mPT by CKs and ammonia, suggesting that OS represents a major mechanism in the induction of the mPT. Treatment of cultures with minocycline, an antiinflammatory agent, which is known to inhibit OS, also diminished the additive effects on the mPT caused by CKs and ammonia. Induction of the mPT in astrocytes appears to represent a major pathogenetic factor in HE, in which CKs and ammonia are critically involved.


Subject(s)
Ammonia/metabolism , Astrocytes/metabolism , Cytokines/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Oxidative Stress/physiology , Ammonia/pharmacology , Animals , Astrocytes/drug effects , Blotting, Western , Brain Edema/etiology , Brain Edema/metabolism , Cells, Cultured , Cytokines/pharmacology , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Permeability Transition Pore , Oxidative Stress/drug effects , Rats
19.
J Neuroinflammation ; 7: 66, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20942959

ABSTRACT

BACKGROUND: Brain edema leading to high intracranial pressure is a lethal complication of acute liver failure (ALF), which is believed to be cytotoxic due to swelling of astrocytes. In addition to the traditional view that elevated levels of blood and brain ammonia are involved in the mechanism of brain edema in ALF, emerging evidence suggests that inflammatory cytokines also contribute to this process. We earlier reported that treatment of astrocyte cultures with a pathophysiological concentration of ammonia (5 mM NH4Cl) resulted in the activation of nuclear factor-kappaB (NF-κB) and that inhibition of such activation diminished astrocyte swelling, suggesting a key role of NF-κB in the mechanism of ammonia-induced astrocyte swelling. Since cytokines are also well-known to activate NF-κB, this study examined for additive/synergistic effects of ammonia and cytokines in the activation of NF-κB and their role in astrocyte swelling. METHODS: Primary cultures of astrocytes were treated with ammonia and cytokines (TNF-α, IL-1, IL-6, IFN-γ, each at 10 ng/ml), individually or in combination, and cell volume was determined by the [3H]-O-methylglucose equilibration method. The effect of ammonia and cytokines on the activation of NF-κB was determined by immunoblots. RESULTS: Cell swelling was increased by ammonia (43%) and by cytokines (37%) at 24 h. Simultaneous co-treatment with cytokines and ammonia showed no additional swelling. By contrast, cultures pretreated with ammonia for 24 h and then exposed to cytokines for an additional 24 h, showed a marked increase in astrocyte swelling (129%). Treatment of cultures with ammonia or cytokines alone also activated NF-κB (80-130%), while co-treatment had no additive effect. However, in cultures pre-treated with ammonia for 24 h, cytokines induced a marked activation of NF-κB (428%). BAY 11-7082, an inhibitor of NF-κB, completely blocked the astrocyte swelling in cultures pre-treated with ammonia and followed by the addition of a mixture of cytokines. CONCLUSION: Our results indicate that ammonia and a mixture of cytokines each cause astrocyte swelling but when these agents are added simultaneously, no additive effects were found. On the other hand, when cells were initially treated with ammonia and 24 h later given a mixture of cytokines, a marked potentiation in cell swelling and NF-κB activation occurred. These data suggest that the potentiation in cell swelling is a consequence of the initial activation of NF-κB by ammonia. These findings provide a likely mechanism for the exacerbation of brain edema in patients with ALF in the setting of sepsis/inflammation.


Subject(s)
Ammonia/pharmacology , Astrocytes/drug effects , Cell Enlargement/drug effects , Cell Size/drug effects , Cytokines/pharmacology , Analysis of Variance , Animals , Astrocytes/cytology , Astrocytes/metabolism , Blotting, Western , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , NF-kappa B/metabolism , Rats
20.
J Neuropathol Exp Neurol ; 69(9): 869-79, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20720509

ABSTRACT

Intracranial hypertension caused by brain edema and associated astrocyte swelling is a potentially lethal complication of acute liver failure (ALF). Mechanisms of edema formation are not well understood, but elevated levels of blood and brain ammonia and its by-product glutamine have been implicated in this process. Since aquaporin-4 (AQP4) has been implicated in brain edema in other conditions, we examined its role in a rat model of ALF induced by the hepatotoxin thioacetamide. Rats with ALF showed increased AQP4 protein in the plasma membrane (PM). Total tissue levels of AQP4 protein and mRNA levels were not altered, indicating that increased AQP4 is not transcriptionally mediated but likely reflects a more stable anchoring of AQP4 to the PM and/or interference with its degradation. An increase inAQP4 immunoreactivity in thePM was observed in perivascular astrocytes in ALF. Rats with ALF also showed increased levels of α-syntrophin, a protein involved in anchoringAQP4 to perivascular astrocytic end-feet. Increased AQP4 andα-syntrophin levels were inhibited by L-histidine, an inhibitor of glutamine transport into mitochondria, suggesting a role for glutamine in the increase of PM levels of AQP4. These results indicate that increased AQP4 PM levels in perivascular astrocytic end-feet are likely critical to the development of brain edema in ALF.


Subject(s)
Aquaporin 4/metabolism , Brain Edema/etiology , Brain/metabolism , Liver Failure, Acute/metabolism , Ammonia/pharmacology , Animals , Aquaporin 4/genetics , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/ultrastructure , Brain/anatomy & histology , Brain/drug effects , Brain/pathology , Brain Edema/metabolism , Brain Edema/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Histidine/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/complications , Liver Failure, Acute/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Inbred F344 , Thioacetamide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...