Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37027593

ABSTRACT

Biometric systems are vulnerable to presentation attacks (PAs) performed using various PA instruments (PAIs). Even though there are numerous PA detection (PAD) techniques based on both deep learning and hand-crafted features, the generalization of PAD for unknown PAI is still a challenging problem. In this work, we empirically prove that the initialization of the PAD model is a crucial factor for generalization, which is rarely discussed in the community. Based on such observation, we proposed a self-supervised learning-based method, denoted as DF-DM. Specifically, DF-DM is based on a global-local view coupled with de-folding and de-mixing to derive the task-specific representation for PAD. During de-folding, the proposed technique will learn region-specific features to represent samples in a local pattern by explicitly minimizing the generative loss. While de-mixing drives detectors to obtain the instance-specific features with global information for more comprehensive representation by minimizing the interpolation-based consistency. Extensive experimental results show that the proposed method can achieve significant improvements in terms of both face and fingerprint PAD in more complicated and hybrid datasets when compared with the state-of-the-art methods. When training in CASIA-FASD and Idiap Replay-Attack, the proposed method can achieve an 18.60% equal error rate (EER) in OULU-NPU and MSU-MFSD, exceeding the baseline performance by 9.54%. The source code of the proposed technique is available at https://github.com/kongzhecn/dfdm.

2.
IEEE Trans Image Process ; 30: 8251-8264, 2021.
Article in English | MEDLINE | ID: mdl-34559651

ABSTRACT

The deep learning models for the Single Image Super-Resolution (SISR) task have found success in recent years. However, one of the prime limitations of existing deep learning-based SISR approaches is that they need supervised training. Specifically, the Low-Resolution (LR) images are obtained through known degradation (for instance, bicubic downsampling) from the High-Resolution (HR) images to provide supervised data as an LR-HR pair. Such training results in a domain shift of learnt models when real-world data is provided with multiple degradation factors not present in the training set. To address this challenge, we propose an unsupervised approach for the SISR task using Generative Adversarial Network (GAN), which we refer to hereafter as DUS-GAN. The novel design of the proposed method accomplishes the SR task without degradation estimation of real-world LR data. In addition, a new human perception-based quality assessment loss, i.e., Mean Opinion Score (MOS), has also been introduced to boost the perceptual quality of SR results. The pertinence of the proposed method is validated with numerous experiments on different reference-based (i.e., NTIRE Real-world SR Challenge validation dataset) and no-reference based (i.e., NTIRE Real-world SR Challenge Track-1 and Track-2) testing datasets. The experimental analysis demonstrates committed improvement from the proposed method over the other state-of-the-art unsupervised SR approaches, both in terms of subjective and quantitative evaluations on different reference metrics (i.e., LPIPS, PI-RMSE graph) and no-reference quality measures such as NIQE, BRISQUE and PIQE. We also provide the implementation of the proposed approach (https://github.com/kalpeshjp89/DUSGAN) to support reproducible research.

3.
Nat Prod Commun ; 5(12): 1961-4, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21299132

ABSTRACT

The volatile oil of the leaves of Pogostemon heyneanus Benth. (Lamiaceae) was analyzed by GC and GC-MS. Twenty-six components representing 96.0% of the oil were identified. The major components of the oil were acetophenone (51.0%), beta-pinene (5.3%), (E)-nerolidol (5.4%), and patchouli alcohol (14.0%). Comparison of the compositions of the oils of P. heyneanus and P. cablin (Blanco) Benth. (Patchouli oil) showed wide variation between them. Though 13 sesquiterpenes and oxygenated sesquiterpenes were detected in both oils, their concentrations in the oils differed widely. Acetophenone, benzoyl acetone and (E)-nerolidol present in the oil of P. heyneanus were not detected in patchouli oil.


Subject(s)
Lamiaceae/chemistry , Oils, Volatile/analysis , Sesquiterpenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...