Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Pain Rep ; 5(6): e855, 2020.
Article in English | MEDLINE | ID: mdl-33134751

ABSTRACT

In recent months, with the emergence of the COVID-19 pandemic, the American College of Surgeons and the U.S. Centers for Disease Control and Prevention officially recommended the delay of nonemergency procedures until the public health crisis is resolved. Deferring elective joint replacement surgeries for an unknown period is likely to decrease the incidence of infection with SARS-CoV-2 but is likely to have detrimental effects in individuals suffering from chronic knee pain. These detrimental effects extend beyond the discomfort of osteoarthritis (OA) and the inconvenience of rescheduling surgery. Disabling pain is a driving factor for individuals to seek medical intervention, including pharmacological palliative treatment and surgical procedures. The need for surgical intervention due to chronic pain as for knee and hip replacement is now put on hold indefinitely because access to surgical care has been limited. Although a moderate delay in surgical intervention may not produce a significant progression of OA within the knee, it could lead to muscle wasting due to immobility and exacerbate comorbidities, making rehabilitation more challenging. Importantly, it will have an impact on comorbidities driven by OA severity, notably decreased quality of life and depression. These patients with unremitting pain become increasingly susceptible to substance use disorders including opioids, alcohol, as well as prescription and illegal drugs. Appreciation of this downstream crisis created by delayed surgical correction requires aggressive consideration of nonsurgical, nonopiate supported interventions to reduce the morbidity associated with these delays brought upon by the currently restricted access to joint repair.

2.
J Pharmacol Exp Ther ; 374(3): 521-528, 2020 09.
Article in English | MEDLINE | ID: mdl-32616515

ABSTRACT

The sensation of pruritus, or itch, is associated with a variety of skin and medical disorders. Itch is transmitted through afferent C-fibers, and sodium channels play a key role in the transmission process. Local anesthetics, which block sodium channels, are used topically to treat itch but generally have a short duration of action and are not selective for afferent nerves underlying the itch sensation. Accordingly, there is a substantial unmet need for safe, efficacious, long-acting treatments for chronic pruritus, including nonhistaminergic itch. We investigated the dose-response, time to onset, and duration of action of ASN008 topical gel, which targets small afferent sodium channels, in a murine model of pruritus in which scratching behavior is induced by intradermal injection of chloroquine into the nape of the neck of C57BL/6 mice. Topical application of ASN008 gel resulted in a concentration-dependent reduction of scratching behavior. Onset of action was ≤1 hour, and duration of scratching inhibition was 15-24 hours. In a further study involving once-daily application for 5 days with chloroquine challenge on day 5, treatment with ASN008 gel again resulted in a concentration-dependent reduction of chloroquine-induced scratching, even when the gel was removed 3 hours after each daily application. In conclusion, topical ASN008 gel produces a dose-dependent reduction of scratching in a mouse model of pruritus, with a rapid onset and long duration of action, and may prove to be an effective, once-daily treatment of a variety of pruritic conditions in humans, including nonhistaminergic itch. SIGNIFICANCE STATEMENT: ASN008 gel produces a dose-dependent reduction of scratching in a mouse model of pruritus, with a rapid onset and long duration of action, and may prove to be an effective, once- or twice-daily treatment for a variety of pruritic conditions in humans. ASN008 gel has demonstrated good safety and tolerability in healthy volunteers and is currently under investigation in a phase 1b clinical study to evaluate safety, tolerability, pharmacokinetics, and preliminary antipruritic efficacy in atopic dermatitis patients (ClinicalTrials.gov ID: NCT03798561).


Subject(s)
Antipruritics/administration & dosage , Antipruritics/pharmacology , Pruritus/drug therapy , Skin/drug effects , Sodium Channel Blockers/administration & dosage , Sodium Channel Blockers/pharmacology , Administration, Topical , Animals , Chloroquine/pharmacology , Dermatitis, Atopic/drug therapy , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
3.
Med Drug Discov ; 5: 100033, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32292906

ABSTRACT

Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality associated with COVID-19 disease. Many patients will require intensive care with ventilatory support. Despite progress and best efforts, the mortality rates projected remain high. Historical data outlook points towards 80% expected fatality for patients progressing to advanced pulmonary disease, even when hospitalized in the intensive care unit. This is particularly true among the patient population over 65. Novel life-saving strategies are desperately needed to mitigate the high mortality that will be associated with the late stage SARS-CoV-2 viral infection associated with the fatal respiratory distress. We hypothesize that the morbidity, severity of the disease, and underlying physiological events leading to mortality are closely linked to the TRPV1 expressing neuronal system (afferent/efferent neurons) in the lungs. TRPV1 expressing cells are responsible for pain transmission, inflammation and immunomodulation throughout the entire pulmonary system and are modulating the processes associated with localized cytokine release (storm) and overall rapid disease progression. We suggest that therapeutic approaches targeting TRPV1 containing nerve fibers in the lungs will modulate the inflammatory and immune signal activity, leading to reduced mortality and better overall outcomes. We also propose to further explore the use of resiniferatoxin (RTX), an ultra-potent TRPV1 agonist currently in clinical trials for cancer and osteoarthritis pain, as a possible ablating agent of TRPV1 positive pulmonary pathways in patients with advanced COVID-19 disease.

7.
Anesthesiology ; 131(1): 132-147, 2019 07.
Article in English | MEDLINE | ID: mdl-31225809

ABSTRACT

BACKGROUND: As the meningeally derived, fibroblast-rich, mass-produced by intrathecal morphine infusion is not produced by all opiates, but reduced by mast cell stabilizers, the authors hypothesized a role for meningeal mast cell/fibroblast activation. Using the guinea pig, the authors asked: (1) Are intrathecal morphine masses blocked by opiate antagonism?; (2) Do opioid agonists not producing mast cell degranulation or fibroblast activation produce masses?; and (3) Do masses covary with Mas-related G protein-coupled receptor signaling thought to mediate mast cell degranulation? METHODS: In adult male guinea pigs (N = 66), lumbar intrathecal catheters connected to osmotic minipumps (14 days; 0.5 µl/h) were placed to deliver saline or equianalgesic concentrations of morphine sulfate (33 nmol/h), 2',6'-dimethyl tyrosine-(Tyr-D-Arg-Phe-Lys-NH2) (abbreviated as DMT-DALDA; 10 pmol/h; µ agonist) or PZM21 (27 nmol/h; biased µ agonist). A second pump delivered subcutaneous naltrexone (25 µg/h) in some animals. After 14 to 16 days, animals were anesthetized and perfusion-fixed. Drug effects on degranulation of human cultured mast cells, mouse embryonic fibroblast activation/migration/collagen formation, and Mas-related G protein-coupled receptor activation (PRESTO-Tango assays) were determined. RESULTS: Intrathecal infusion of morphine, DMT-DALDA or PZM21, but not saline, comparably increased thermal thresholds for 7 days. Spinal masses proximal to catheter tip, composed of fibroblast/collagen type I (median: interquartile range, 0 to 4 scale), were produced by morphine (2.3: 2.0 to 3.5) and morphine plus naltrexone (2.5: 1.4 to 3.1), but not vehicle (1.2: 1.1 to 1.5), DMT-DALDA (1.0: 0.6 to 1.3), or PZM21 (0.5: 0.4 to 0.8). Morphine in a naloxone-insensitive fashion, but not PZM21 or DMT-DALDA, resulted in mast cell degranulation and fibroblast proliferation/collagen formation. Morphine-induced fibroblast proliferation, as mast cell degranulation, is blocked by cromolyn. Mas-related G protein-coupled receptor activation was produced by morphine and TAN67 (∂-opioid agonist), but not by PZM21, TRV130 (mu biased ligand), or DMT-DALDA. CONCLUSIONS: Opiates that activate Mas-related G protein-coupled receptor will degranulate mast cells, activate fibroblasts, and result in intrathecal mass formation. Results suggest a mechanistically rational path forward to safer intrathecal opioid therapeutics.


Subject(s)
Cell Degranulation/drug effects , Fibroblasts/drug effects , Mast Cells/drug effects , Morphine/pharmacology , Receptors, G-Protein-Coupled/physiology , Spine/drug effects , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Guinea Pigs , Humans , Infusions, Spinal , Male , Models, Animal , Morphine/administration & dosage , Signal Transduction/physiology
8.
Cell Rep ; 23(9): 2667-2677, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29847797

ABSTRACT

Apolipoprotein A-I binding protein (AIBP) reduces lipid raft abundance by augmenting the removal of excess cholesterol from the plasma membrane. Here, we report that AIBP prevents and reverses processes associated with neuroinflammatory-mediated spinal nociceptive processing. The mechanism involves AIBP binding to Toll-like receptor-4 (TLR4) and increased binding of AIBP to activated microglia, which mediates selective regulation of lipid rafts in inflammatory cells. AIBP-mediated lipid raft reductions downregulate LPS-induced TLR4 dimerization, inflammatory signaling, and expression of cytokines in microglia. In mice, intrathecal injections of AIBP reduce spinal myeloid cell lipid rafts, TLR4 dimerization, neuroinflammation, and glial activation. Intrathecal AIBP reverses established allodynia in mice in which pain states were induced by the chemotherapeutic cisplatin, intraplantar formalin, or intrathecal LPS, all of which are pro-nociceptive interventions known to be regulated by TLR4 signaling. These findings demonstrate a mechanism by which AIBP regulates neuroinflammation and suggest the therapeutic potential of AIBP in treating preexisting pain states.


Subject(s)
Carrier Proteins/metabolism , Inflammation/pathology , Pain/pathology , Spinal Cord/pathology , Animals , Cholesterol/metabolism , Cisplatin/adverse effects , Cytokines/cerebrospinal fluid , Formaldehyde , Hyperalgesia/chemically induced , Hyperalgesia/complications , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Inflammation/cerebrospinal fluid , Inflammation/complications , Lipopolysaccharides , Membrane Microdomains/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Motor Activity , Myeloid Cells/metabolism , Pain/cerebrospinal fluid , Pain/complications , Pain/physiopathology , Protein Binding , Protein Multimerization , Signal Transduction , Spinal Cord/physiopathology , Toll-Like Receptor 4/metabolism
9.
Semin Immunopathol ; 40(3): 301-314, 2018 05.
Article in English | MEDLINE | ID: mdl-29568973

ABSTRACT

The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of "sterile inflammation" in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.


Subject(s)
Migraine Disorders/metabolism , Neurogenic Inflammation/metabolism , Neurons/metabolism , Calcitonin Gene-Related Peptide/metabolism , Humans , Substance P/metabolism
10.
Toxins (Basel) ; 10(4)2018 03 23.
Article in English | MEDLINE | ID: mdl-29570628

ABSTRACT

Pruriceptive itch originates following activation of peripheral sensory nerve terminals when pruritogens come in contact with the skin. The ability of botulinum neurotoxins (BoNTs) to attenuate transmitter release from afferent terminals provides a rationale for studying its effect on pruritus. This study investigated the effects of BoNT/A1 and BoNT/B1 on mast cell dependent (Compound 48/80:48/80) and independent (Chloroquine:CQ) scratching. C57Bl/6 male mice received intradermal injection of 1.5 U of BoNT/A1, BoNT/B1 or saline 2, 7, 14 and 21 days prior to ipsilateral 48/80 or CQ at the nape of the neck. Ipsilateral hind paw scratching was determined using an automated recording device. The effect of BoNTs on 48/80 mediated mast cell degranulation was analyzed in human and murine mast cells and the presence of SNAREs was determined using qPCR, immunostaining and Western blot. Pre-treatment with BoNT/A1 and BoNT/B1 reduced 48/80 and CQ induced scratching behavior starting on day 2 with reversal by day 21. Both serotypes inhibited 48/80 induced mast cell degranulation. qPCR and immunostaining detected SNAP-25 mRNA and protein, respectively, in mast cells, however, Western blots did not. This study demonstrates the long-lasting anti-pruritic effects of two BoNT serotypes, in a murine pruritus model using two different mechanistically driven pruritogens. These data also indicate that BoNTs may have a direct effect upon mast cell degranulation.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Mast Cells/drug effects , Animals , Botulinum Toxins, Type A/therapeutic use , Cell Degranulation/drug effects , Cells, Cultured , Chloroquine , Humans , Male , Mast Cells/physiology , Mice, Inbred C57BL , Pruritus/chemically induced , Pruritus/drug therapy , p-Methoxy-N-methylphenethylamine
11.
Cephalalgia ; 38(6): 1057-1070, 2018 05.
Article in English | MEDLINE | ID: mdl-28738691

ABSTRACT

Background A common characteristic of migraine-inducing substances is that they cause headache and no pain in other areas of the body. Few studies have compared pain mechanisms in the trigeminal and spinal systems and, so far, no major differences have been noted. We compared signalling molecules in the trigeminal and spinothalamic system after infusion of the migraine-provoking substance glyceryltrinitrate. Method A catheter was placed in the femoral vein of rats and one week later glyceryltrinitrate 4 µg/kg/min was infused for 20 min. Protein expression in the dura mater, trigeminal ganglion, nucleus caudalis, dorsal root ganglion and the dorsal horn of the thoracic spinal cord was analysed at different time points using western blotting and immunohistochemistry. Results Glyceryltrinitrate caused a threefold increase in expression of phosphorylated extracellular signal-regulated kinases at 30 min in the dura mater and nucleus caudalis ( P < 0.05) and at 2 h in the trigeminal ganglion with very few expressions in the dorsal root ganglion. In the nucleus caudalis, expression of phosphorylated extracellular signal-regulated kinases and Cam KII increased 2.6-fold and 3.2-fold, respectively, at 2 h after glycerytrinitrate infusion ( P < 0.01). p-CREB/ATF-1 upregulation was observed only at 30 min ( P < 0.05) in the nucleus caudalis. None of these markers showed increased expression in the regions of thoracic spinal cord dorsal horn. Conclusion The dura, trigeminal ganglion and nucleus caudalis are activated shortly after glycerytrinitrate infusion with long-lasting expression of phosphorylated extracellular signal-regulated kinases observed in the nucleus caudalis. These activations were not observed at the spinal level.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/biosynthesis , Cyclic AMP Response Element-Binding Protein/biosynthesis , Extracellular Signal-Regulated MAP Kinases/biosynthesis , Trigeminal Caudal Nucleus/drug effects , Trigeminal Ganglion/drug effects , Animals , Dura Mater/drug effects , Male , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Migraine Disorders/physiopathology , Nitroglycerin/toxicity , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord/metabolism , Trigeminal Caudal Nucleus/metabolism , Trigeminal Ganglion/metabolism , Up-Regulation , Vasodilator Agents/toxicity
12.
Scand J Pain ; 16: 1-9, 2017 07.
Article in English | MEDLINE | ID: mdl-28850381

ABSTRACT

BACKGROUND AND AIMS: Despite widespread use, the efficacy of neuraxial glucocorticoids for neuropathic pain is subject to debate. Since most glucocorticoid actions are mediated through its receptor, we explored the effects of intrathecal methylprednisolone acetate (MPA) on total glucocorticoid receptor (tGR) levels and activation of the glucocorticoid receptor (phosphorylated state=pGR) within the spinal dorsal horn (SDH) and dorsal root ganglion (DRG) in a spinal nerve ligation (SNL) model in rats. METHODS: Rats received unilateral ligation of the L5/L6 spinal nerves and were treated with two intrathecal doses of either 400µg MPA or 0.9% saline with a 72-h interval. Plantar tactile thresholds were measured over time. Seven days after drug treatment, DRG and SDH were harvested to assess tGR and pGR levels using immunohistochemistry and qPCR. RESULTS: Allodynia, defined by lowered tactile withdrawal thresholds after SNL, was unaltered by intrathecal MPA. In saline controls, mRNA levels of tGR did not change after SNL in the DRGs or SDH. tGR and pGR protein levels in the SDH however, significantly increased on the ipsilateral side of SNL compared to the contralateral side and to naïve tissue. When treating rats with MPA, tGR mRNA levels were significantly reduced in the SDH compared to saline controls. tGR and pGR protein levels, however were not significantly lower compared to saline controls. CONCLUSIONS: In intrathecal MPA treated rats, tGR mRNA levels decreased after SNL. However this did not result in lower tGR and pGR protein levels compared to saline controls, and did not decrease ligation-induced mechanical hypersensitivity. IMPLICATIONS: Intrathecal MPA treatment after SNL did not result in lower tGR and pGR levels within the SDH and DRG compared to saline controls. In present study we did not differentiate between the various isoforms of the GR which might clarify this finding.


Subject(s)
Glucocorticoids/pharmacology , Injections, Spinal , Methylprednisolone Acetate/pharmacology , Receptors, Glucocorticoid , Spinal Nerves/drug effects , Animals , Disease Models, Animal , Hyperalgesia , Ligation , Male , Neuralgia/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
13.
PLoS One ; 11(5): e0155039, 2016.
Article in English | MEDLINE | ID: mdl-27213950

ABSTRACT

INTRODUCTION: Infusion of glyceryl trinitrate (GTN), a donor of nitric oxide, induces immediate headache in humans that in migraineurs is followed by a delayed migraine attack. In order to achieve increased knowledge of mechanisms activated during GTN-infusion this present study aims to investigate transcriptional responses to GTN-infusion in the rat trigeminal ganglia. METHODS: Rats were infused with GTN or vehicle and trigeminal ganglia were isolated either 30 or 90 minutes post infusion. RNA sequencing was used to investigate transcriptomic changes in response to the treatment. Furthermore, we developed a novel method for Gene Set Analysis Of Variance (GSANOVA) to identify gene sets associated with transcriptional changes across time. RESULTS: 15 genes displayed significant changes in transcription levels in response to GTN-infusion. Ten of these genes showed either sustained up- or down-regulation in the 90-minute period after infusion. The GSANOVA analysis demonstrate enrichment of pathways pointing towards an increase in immune response, signal transduction, and neuroplasticity in response to GTN-infusion. Future functional in-depth studies of these mechanisms are expected to increase our understanding of migraine pathogenesis.


Subject(s)
Migraine Disorders/chemically induced , Migraine Disorders/genetics , Nitroglycerin/adverse effects , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Vasodilator Agents/adverse effects , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/drug effects , Infusions, Intraventricular , Male , Migraine Disorders/metabolism , Nitroglycerin/administration & dosage , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA , Vasodilator Agents/administration & dosage
14.
Eur J Neurosci ; 44(1): 1714-22, 2016 07.
Article in English | MEDLINE | ID: mdl-27108664

ABSTRACT

Increasing evidence suggests that botulinum neurotoxins (BoNTs) delivered into the skin and muscle in certain human and animal pain states may exert antinociceptive efficacy though their uptake and transport to central afferent terminals. Cleavage of soluble N-methylaleimide-sensitive attachment protein receptor by BoNTs can impede vesicular mediated neurotransmitter release as well as transport/insertion of channel/receptor subunits into plasma membranes, an effect that can reduce activity-evoked facilitation. Here, we explored the effects of intraplantar botulinum toxin- B (BoNT-B) on peripheral inflammation and spinal nociceptive processing in an inflammatory model of pain. C57BL/6 mice (male) received unilateral intraplantar BoNT (1 U, 30 µL) or saline prior to intraplantar carrageenan (20 µL, 2%) or intrathecal N-methyl-D-aspartate (NMDA), substance P or saline (5 µL). Intraplantar carrageenan resulted in edema and mechanical allodynia in the injected paw and increased phosphorylation of a glutamate subunit (pGluA1ser845) and a serine/threonine-specific protein kinase (pAktser473) in spinal dorsal horn along with an increased incidence of spinal c-Fos positive cells. Pre-treatment with intraplantar BoNT-B reduced carrageenan evoked: (i) allodynia, but not edema; (ii) pGluA1 and pAkt and (iii) c-Fos expression. Further, intrathecal NMDA and substance P each increased dorsal horn levels of pGluA1 and pAkt. Intraplantar BoNT-B inhibited NMDA, but not substance P evoked phosphorylation of GluA1 and Akt. These results suggest that intraplantar toxin is transported centrally to block spinal activation and prevent phosphorylation of a glutamate receptor subunit and a kinase, which otherwise contribute to facilitated states.


Subject(s)
Analgesics/pharmacology , Botulinum Toxins, Type A/pharmacology , Nociception , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Receptors, AMPA/metabolism , Spinal Cord Dorsal Horn/metabolism , Analgesics/administration & dosage , Analgesics/therapeutic use , Animals , Botulinum Toxins, Type A/administration & dosage , Botulinum Toxins, Type A/therapeutic use , Carrageenan/toxicity , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Male , Mice , Mice, Inbred C57BL , N-Methylaspartate/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-fos/metabolism , Spinal Cord Dorsal Horn/physiology , Substance P/pharmacology
15.
Toxins (Basel) ; 7(11): 4519-63, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26556371

ABSTRACT

Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.


Subject(s)
Botulinum Toxins/pharmacology , Botulinum Toxins/therapeutic use , Neurotoxins/pharmacology , Neurotoxins/therapeutic use , Pain/drug therapy , Pain/physiopathology , Animals , Botulinum Toxins/chemistry , Humans , Inflammation/complications , Inflammation/drug therapy , Models, Molecular , Neurotoxins/chemistry , Pain/etiology , Peripheral Nervous System Diseases/drug therapy
16.
F1000Prime Rep ; 7: 56, 2015.
Article in English | MEDLINE | ID: mdl-26097729

ABSTRACT

The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.

17.
Neurobiol Dis ; 79: 111-22, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25958249

ABSTRACT

Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 µl) or saline. 3 days later, mice received ipsilateral (ipsi)-SO capsaicin (20 µl of 0.5mM solution) or meningeal capsaicin (4 µl of 0.35 µM). Pre-treatment with ipsi-SO BoNT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; and vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Membrane Transport Modulators/pharmacology , Migraine Disorders/drug therapy , Neurons, Afferent/drug effects , Trigeminal Caudal Nucleus/drug effects , Afferent Pathways/drug effects , Afferent Pathways/pathology , Afferent Pathways/physiopathology , Animals , Capsaicin , DNA-Binding Proteins , Disease Models, Animal , Face , Male , Meninges/blood supply , Meninges/drug effects , Meninges/pathology , Mice, Inbred C57BL , Migraine Disorders/pathology , Migraine Disorders/physiopathology , Nerve Tissue Proteins/metabolism , Neurons, Afferent/pathology , Neurons, Afferent/physiology , Nociceptive Pain/drug therapy , Nociceptive Pain/pathology , Nociceptive Pain/physiopathology , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Neurokinin-1/metabolism , SNARE Proteins/metabolism , Skin/drug effects , Skin/innervation , Trigeminal Caudal Nucleus/pathology , Trigeminal Caudal Nucleus/physiopathology
18.
Cephalalgia ; 35(14): 1287-97, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25724914

ABSTRACT

BACKGROUND: Migraine patients develop attacks several hours after intravenous infusion of glyceryl trinitrate. Due to the short half-life of nitric oxide, this delayed migraine cannot be caused by a direct action of nitric oxide derived from glyceryl trinitrate. The involvement of meningeal inflammation and dural mast cell degranulation is supported by the effectiveness of prednisolone on glyceryl trinitrate-induced delayed headache. METHODS: Using a newly developed rat model mimicking the human glyceryl trinitrate headache model, we have investigated the occurrence of dural mast cell degranulation after a clinically relevant dose of glyceryl trinitrate. RESULTS: A 6-fold increase in degranulation was observed starting at 2 hours after glyceryl trinitrate infusion. Interestingly, pre-treatment with the effective anti-migraine substances L-nitro-arginine methyl ester and sumatriptan prevented glyceryl trinitrate-induced mast cell degranulation whereas the calcitonin gene-related peptide-receptor antagonist olcegepant and the substance P receptor antagonist L-733,060 did not affect mast cell degranulation. However, topical application of two different nitric oxide donors did not cause mast cell degranulation ex vivo. CONCLUSIONS: Direct application of an exogenous nitric oxide donor on dural mast cells does not cause mast cell degranulation ex vivo. In vivo application of the nitric oxide donor glyceryl trinitrate leads to a prominent level of degranulation via a yet unknown mechanism. This effect can be completely blocked by inhibition of the endogenous nitric oxide production and by 5-HT1B/1D receptor agonists but is unaffected by calcitonin gene-related peptide and substance P receptor antagonists.


Subject(s)
Cell Degranulation/drug effects , Mast Cells/drug effects , Mast Cells/metabolism , Nitric Oxide Donors/toxicity , Nitroglycerin/toxicity , Animals , Cell Degranulation/physiology , Headache/chemically induced , Headache/metabolism , Male , Mast Cells/physiology , Rats , Rats, Sprague-Dawley
19.
Cephalalgia ; 35(3): 220-33, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24895375

ABSTRACT

BACKGROUND AND AIMS: Calcitonin gene-related peptide (CGRP) and glyceryl trinitrate (GTN) infusion in migraineurs provokes headache resembling spontaneous migraine, and CGRP receptor antagonists are effective in the treatment of acute migraine. We hypothesized that CGRP infusion would increase molecular markers of neuronal activation in migraine-relevant tissues of the rat. METHODS: CGRP was infused intravenously (i.v.) in freely moving rats to circumvent factors like anesthesia, acute surgery and severe hypotension, the three confounding factors for c-Fos expression. The trigeminal nucleus caudalis (TNC) was isolated at different time points after CGRP infusion. The level of c-Fos mRNA and protein expression in TNC were analyzed by qPCR and immunohistochemistry. c-Fos-stained nuclei were also counted in the nucleus tractus solitarius (NTS) and caudal ventrolateral medulla (CVLM), integrative sites in the brain stem for processing cardiovascular signals. We also investigated Zif268 protein expression (another immediate early gene) in TNC. The protein expression of p-ERK, p-CREB and c-Fos was analyzed in dura mater, trigeminal ganglion (TG) and TNC samples using Western blot. RESULTS: CGRP infusion caused a significant dose-dependent fall in mean arterial blood pressure. No significant activation of c-Fos in the TNC at mRNA and protein levels was observed after CGRP infusion. A significant increase in c-Fos protein was observed in the NTS and CVLM in the brain stem. Zif268 expression in the TNC was also not changed after CGRP infusion. p-ERK was increased in the dura mater 30 minutes after CGRP infusion. CONCLUSION: CGRP infusion increased the early expression of p-ERK in the dura mater but did not increase c-Fos and Zif268 expression in the TNC. The rats may, thus, differ from migraine patients, in whom infusion of CGRP caused headache and a delayed migraine attack. The rat CGRP infusion model with c-Fos or Zif268 as neuronal pain markers in TNC is unsuitable for antimigraine drug testing.


Subject(s)
Calcitonin Gene-Related Peptide/administration & dosage , Medulla Oblongata/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Solitary Nucleus/metabolism , Trigeminal Caudal Nucleus/metabolism , Animals , Gene Expression Regulation , Infusions, Intravenous , Male , Medulla Oblongata/drug effects , Rats , Rats, Sprague-Dawley , Solitary Nucleus/drug effects , Trigeminal Caudal Nucleus/drug effects
20.
Br J Pharmacol ; 171(18): 4177-92, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24819339

ABSTRACT

Migraine pain represents sensations arising from the activation of trigeminal afferents, which innervate the meningeal vasculature and project to the trigeminal nucleus caudalis (TNC). Pain secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the TNC. Such viscerosomatic convergence accounts for referral of migraine pain arising from meningeal afferents to particular extracranial dermatomes. Botulinum toxins (BoNTs) delivered into extracranial dermatomes are effective in and approved for treating chronic migraine pain. Aside from their well-described effect upon motor endplates, BoNTs are also taken up in local afferent nerve terminals where they cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and prevent local terminal release. However, a local extracranial effect of BoNT cannot account for allthe effects of BoNT upon migraine. We now know that peripherally delivered BoNTs are taken up in sensory afferents and transported to cleave SNARE proteins in the ganglion and TNC, prevent evoked afferent release and downstream activation. Such effects upon somatic input (as from the face) likewise would not alone account for block of input from converging meningeal afferents. This current work suggests that BoNTs may undergo transcytosis to cleave SNAREs in second-order neurons or in adjacent afferent terminals. Finally, while SNAREs mediate exocytotic release, they are also involved in transport of channels and receptors involved in facilitated pain states. The role of such post-synaptic effects of BoNT action in migraine remains to be determined.


Subject(s)
Botulinum Toxins/pharmacology , Migraine Disorders/metabolism , Animals , Botulinum Toxins/therapeutic use , Humans , Migraine Disorders/drug therapy , Neurons, Afferent/metabolism , Pain/drug therapy , Pain/metabolism , SNARE Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...