Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38569009

ABSTRACT

Soybean rust is an economically significant disease caused by the fungus Phakopsora pachyrhizi that negatively impacts soybean (Glycine max (L.) Merr.) production throughout the world. Susceptible plants infected by P. pachyrhizi develop tan-colored lesions on the leaf surface that give rise to funnel-shaped uredinia as the disease progresses. While most soybean germplasm is susceptible, seven genetic loci (Rpp1 to Rpp7) that provide race-specific resistance to P. pachyrhizi (Rpp) have been identified. Rpp3 was first discovered and characterized in the soybean accession PI 462312 (Ankur), and it was also determined to be one of two Rpp genes present in PI 506764 (Hyuuga). Genetic crosses with PI 506764 were later used to fine-map the Rpp3 locus to a 371 kb region on chromosome 6. The corresponding region in the susceptible Williams 82 (Wm82) reference genome contains several homologous nucleotide binding site-leucine rich repeat (NBS-LRR) genes. To identify Rpp3, we designed oligonucleotide primers to amplify Rpp3 candidate (Rpp3C) NBS-LRR genes at this locus from PI 462312, PI 506764, and Wm82 using polymerase chain reaction (PCR). Five Rpp3C genes were identified in both Rpp3-resistant soybean lines, and co-silencing these genes compromised resistance to P. pachyrhizi. Gene expression analysis and sequence comparisons of the Rpp3C genes in PI 462312 and PI 506764 suggest that a single candidate gene, Rpp3C3, is responsible for Rpp3-mediated resistance.

2.
New Phytol ; 241(3): 1266-1276, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984076

ABSTRACT

The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole-genome sequences. We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini-chromosome. Genome assembly of a Zambian strain revealed that its mini-chromosome was similar to the B71 mini-chromosome but with a high level of structural variation. Our findings show that while core genomes of the multiple introductions are highly similar, the mini-chromosomes have undergone marked diversification. The maintenance of the mini-chromosome and rapid genomic changes suggest the mini-chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions.


Subject(s)
Ascomycota , Magnaporthe , Triticum , Triticum/genetics , Bangladesh/epidemiology , Zambia/epidemiology , Magnaporthe/genetics , Chromosomes , Plant Diseases/microbiology
3.
Pharm Dev Technol ; 28(10): 978-991, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37937865

ABSTRACT

Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.


Subject(s)
Nanoparticles , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Administration, Inhalation , Tuberculosis/drug therapy , Lung
4.
Oxid Med Cell Longev ; 2021: 5563746, 2021.
Article in English | MEDLINE | ID: mdl-34336101

ABSTRACT

With over a million deaths every year around the world, lung cancer is found to be the most recurrent cancer among all types. Nonsmall cell lung carcinoma (NSCLC) amounts to about 85% of the entire cases. The other 15% owes it to small cell lung carcinoma (SCLC). Despite decades of research, the prognosis for NSCLC patients is poorly understood with treatment options limited. First, this article emphasises on the part that tumour microenvironment (TME) and its constituents play in lung cancer progression. This review also highlights the inflammatory (pro- or anti-) roles of different cytokines (ILs, TGF-ß, and TNF-α) and chemokine (CC, CXC, C, and CX3C) families in the lung TME, provoking tumour growth and subsequent metastasis. The write-up also pinpoints recent developments in the field of chemokine biology. Additionally, it covers the role of extracellular vesicles (EVs), as alternate carriers of cytokines and chemokines. This allows the cytokines/chemokines to modulate the EVs for their secretion, trafficking, and aid in cancer proliferation. In the end, this review also stresses on the role of these factors as prognostic biomarkers for lung immunotherapy, apart from focusing on inflammatory actions of these chemoattractants.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Chemokines/metabolism , Cytokines/metabolism , Lung Neoplasms/immunology , Cell Proliferation , Humans , Tumor Microenvironment
5.
Biosci Rep ; 41(3)2021 03 26.
Article in English | MEDLINE | ID: mdl-33619567

ABSTRACT

Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fungal pathogens are known to play a fundamental role in pathogenesis, the composition of Che and Cps extracellular proteins has not been examined. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics prediction tools, 630 extracellular proteins and 251 cell membrane proteins of Che and Cps were identified in the classical secretion pathway in the present study. In the non-classical secretion pathway, 79 extracellular proteins were identified. The cohort of proteins belonged to 364 OrthoMCL clusters, with the majority (62%) present in both species, and a subset unique to Che (19%) and Cps (20%). These extracellular proteins were predicted to play important roles in cell structure, regulation, metabolism, and pathogenesis. A total of 124 proteins were identified as putative effectors. Many of them are orthologs of proteins with documented roles in suppressing host defense and facilitating infection processes in other pathosystems, such as SnodProt1-like proteins in the OrthoMCL cluster OG5_152723 and PhiA-like cell wall proteins in the cluster OG5_155754. This exploratory study provides a repository of secreted proteins and putative effectors that can provide insights into the virulence mechanisms of the boxwood blight pathogens.


Subject(s)
Fungal Proteins/metabolism , Hypocreales/metabolism , Secretory Pathway , Extracellular Space/chemistry , Fungal Proteins/chemistry , Fungal Proteins/genetics , Hypocreales/genetics , Proteome/genetics , Proteome/metabolism
6.
Int J Endocrinol ; 2020: 5924756, 2020.
Article in English | MEDLINE | ID: mdl-33101408

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a polygenic metabolic disease described by hyperglycemia, which is caused by insulin resistance or reduced insulin secretion. The interaction between various genetic variants and environmental factors triggers T2DM. The aim of this study was to find risk associated with genetic variants rs5210 and rs2237895 of KCNJ11 and KCNQ1 genes, respectively, in the development of T2DM in the Indian population. A total number of 300 cases of T2DM and 100 control samples were studied to find the polymorphism in KCNJ11 and KCNQ1 through PCR-RFLP. The genotype and allele frequencies in T2DM cases were significantly different compared to the control population. KCNJ11 rs5210 and KCNQ1 rs2237895 variants were found to be significantly associated with risk of T2DM in dominant (KCNJ11: OR, 2.07; 95% CI, 1.30-3.27; p - 0.001; KCNQ1: OR, 2.33; 95% CI, 1.46-3.70; p - 0.0003) and codominant models (KCNJ11: OR, 1.76; 95% CI, 1.09-2.84; p - 0.020; KCNQ1: OR, 1.85; 95% CI, 1.16-2.95; p - 0.009). We also compared clinicopathological characteristics between cases and control and observed a significant difference in all the parameters except HDL, gender, and family history. In this study, clinicopathological data with a carrier of a variant allele of both KCNJ11 and KCNQ1 genes were also analysed, and a significant association was found between the carrier of a variant allele with gender and PPG in KCNJ11 and with triglyceride in KCNQ1. We confirm the significant association of KCNJ11 (rs5210) and KCNQ1 (rs2237895) gene polymorphism with T2DM, indicating the role of these variants in developing risk for T2DM in Indian population.

7.
RNA ; 26(12): 1919-1934, 2020 12.
Article in English | MEDLINE | ID: mdl-32912962

ABSTRACT

During zebrafish development, an early type of rRNA is gradually replaced by a late type that is substantially different in sequence. We applied RiboMeth-seq to rRNA from developmental stages for profiling of 2'-O-Me, to learn if changes in methylation pattern were a component of the shift. We compiled a catalog of 2'-O-Me sites and cognate box C/D guide RNAs comprising 98 high-confidence sites, including 10 sites that were not known from other vertebrates, one of which was specific to late-type rRNA. We identified a subset of sites that changed in methylation status during development and found that some of these could be explained by availability of their cognate SNORDs. Sites that changed during development were enriched in the novel sites revealed in zebrafish. We propose that the early type of rRNA is a specialized form and that its structure and ribose methylation pattern may be an adaptation to features of development, including translation of specific maternal mRNAs.


Subject(s)
RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/metabolism , Ribose/chemistry , Ribosomes/metabolism , Zebrafish/growth & development , Animals , Base Sequence , Computational Biology , Methylation , Nucleic Acid Conformation , RNA, Ribosomal/genetics , RNA, Small Nucleolar/genetics , Ribose/genetics , Ribose/metabolism , Ribosomes/genetics , Zebrafish/genetics , Zebrafish/metabolism
8.
J Biomol Struct Dyn ; 38(17): 5044-5061, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31755358

ABSTRACT

Understanding the dual inhibition mechanism of food derivative peptides targeting the enzymes (Renin and Angiotensin Converting enzyme) in the Renin Angiotensin System. Two peptides RALP and WYT were reported to possess antihypertensive activity targeting both renin and ACE, and we have used molecular docking and molecular dynamics simulation, in order to understand the underlying mechanism. The selected peptides (RALP and WYT) from the series of peptides reported were docked to renin and ACE and two binding modes were selected based on the binding energy, interaction pattern and clusters of docking simulation. The enzyme-peptide complexes for renin and ACE (Renin/RALP1,2; ACE/RALP1,2; Renin/WYT1,2 and ACE/WYT1,2) were subjected to molecular dynamics simulation. Our results identified that the peptides inhibiting renin, tends to move out of the binding pockets (S1' S2') which is critical for potent binding and occupies the less important pockets (S4 and S3). This could possibly be the reason for its low potency. Whereas, the same peptides targeting ACE, tends to be intact in the pocket because of the metal ion coordination and there is an ample room to improve on its efficacy. Our results further pave way for the biochemist, medicinal chemist to design dual peptides targeting the RAS effectively. Communicated by Ramaswamy H. Sarma.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Renin-Angiotensin System , Antihypertensive Agents , Molecular Docking Simulation , Peptides , Peptidyl-Dipeptidase A/metabolism , Renin
9.
Methods Mol Biol ; 1991: 43-54, 2019.
Article in English | MEDLINE | ID: mdl-31041761

ABSTRACT

Extracellular ATP functions as an important signaling molecule in both plants and animals. In plants, ATP is released in the extracellular region of cells in response to environmental perturbations, such as herbivory, cellular damage, or other abiotic and biotic stimuli, which is then perceived by the purinoceptor P2K1 as a damaged-self signal for activation of defense responses. Given its involvement in various physiological processes, quantification of extracellular ATP is important for further understanding of its molecular function. In this chapter, we describe a method for the accurate and reliable determination of extracellular ATP concentrations in plant cell culture media based on the luciferase-luciferin reaction, using either end-point or real-time detection assays. The protocol can be easily performed with any luminometer within 1 h after sample collection. Although we use Arabidopsis suspension cells, the protocol described can be optimized for any cell type.


Subject(s)
Adenosine Triphosphate/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Culture Media/metabolism , Luciferases/metabolism , Quinolines/metabolism , Thiazoles/metabolism
10.
New Phytol ; 222(3): 1561-1572, 2019 05.
Article in English | MEDLINE | ID: mdl-30623449

ABSTRACT

Fungal plant pathogens, like rust-causing biotrophic fungi, secrete hundreds of effectors into plant cells to subvert host immunity and promote pathogenicity on their host plants by manipulating specific physiological processes or signal pathways, but the actual function has been demonstrated for very few of these proteins. Here, we show that the PgtSR1 effector proteins, encoded by two allelic genes (PgtSR1-a and PgtSR1-b), from the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt), suppress RNA silencing in plants and impede plant defenses by altering the abundance of small RNAs that serve as defense regulators. Expression of the PgtSR1s in plants revealed that the PgtSR1s promote susceptibility to multiple pathogens and partially suppress cell death triggered by multiple R proteins. Overall, our study provides the first evidence that the filamentous fungus P. graminis has evolved to produce fungal suppressors of RNA silencing and indicates that PgtSR1s suppress both basal defenses and effector triggered immunity.


Subject(s)
Basidiomycota/metabolism , Fungal Proteins/metabolism , Plants/immunology , Plants/microbiology , RNA Interference , Alleles , Arabidopsis/microbiology , Basidiomycota/genetics , Cell Death , Gene Expression Regulation, Fungal , Green Fluorescent Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plants, Genetically Modified , RNA, Plant/metabolism , Nicotiana/microbiology , Transgenes
11.
Front Plant Sci ; 10: 1574, 2019.
Article in English | MEDLINE | ID: mdl-31998329

ABSTRACT

MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus (Puccinia striiformis f. sp. tritici), we identified 182 previously known miRNAs, 91 variants of known miRNAs, and 163 candidate novel wheat miRNAs. Known miRNA loci were usually copied in all three wheat sub-genomes, whereas novel miRNA loci were often specific to a single sub-genome. DESeq2 analysis of differentially expressed microRNAs revealed 23 miRNAs that exhibit cultivar-specific differences. TA078/miR399b showed cultivar-specific differential regulation in response to infection. Using different target prediction algorithms, 145 miRNAs were predicted to target wheat genes, while 69 miRNAs were predicted to target fungal genes. We also confirmed reciprocal expression of TA078/miR399b and tae-miR9664 and their target genes in different treatments, providing evidence for miRNA-mediated regulation during infection. Both known and novel miRNAs were predicted to target fungal genes, suggesting trans-kingdom regulation of gene expression. Overall, this study contributes to the current repository of wheat miRNAs and provides novel information on the yet-uncharacterized roles for miRNAs in the wheat-stripe rust pathosystem.

12.
Phytopathology ; 107(1): 75-83, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27503371

ABSTRACT

Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.


Subject(s)
Bacterial Proteins/metabolism , Basidiomycota/genetics , Host-Pathogen Interactions , Plant Diseases/immunology , Plant Immunity , Triticum/immunology , Bacterial Proteins/genetics , Basidiomycota/physiology , Cell Death , Gene Expression , Gene Expression Regulation, Plant , Genes, Suppressor , Hypersensitivity , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plants, Genetically Modified , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/physiology , Reactive Oxygen Species/metabolism , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology , Transcriptome , Triticum/genetics , Triticum/microbiology
13.
BMC Genomics ; 16: 718, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26391470

ABSTRACT

BACKGROUND: Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is a costly global disease that burdens farmers with yield loss and high fungicide expenses. This sophisticated biotrophic parasite infiltrates wheat leaves and develops infection structures inside host cells, appropriating nutrients while suppressing the plant defense response. Development in most eukaryotes is regulated by small RNA molecules, and the success of host-induced gene silencing technology in Puccinia spp. implies the existence of a functional RNAi system. However, some fungi lack this capability, and small RNAs have not yet been reported in rust fungi. The objective of this study was to determine whether P. striiformis carries an endogenous small RNA repertoire. RESULTS: We extracted small RNA from rust-infected wheat flag leaves and performed high-throughput sequencing. Two wheat cultivars were analyzed: one is susceptible; the other displays partial high-temperature adult plant resistance. Fungal-specific reads were identified by mapping to the P. striiformis draft genome and removing reads present in uninfected control libraries. Sequencing and bioinformatics results were verified by RT-PCR. Like other RNAi-equipped fungi, P. striiformis produces large numbers of 20-22 nt sequences with a preference for uracil at the 5' position. Precise post-transcriptional processing and high accumulation of specific sRNA sequences were observed. Some predicted sRNA precursors possess a microRNA-like stem-loop secondary structure; others originate from much longer inverted repeats containing gene sequences. Finally, sRNA-target prediction algorithms were used to obtain a list of putative gene targets in both organisms. Predicted fungal target genes were enriched for kinases and small secreted proteins, while the list of wheat targets included homologs of known plant resistance genes. CONCLUSIONS: This work provides an inventory of small RNAs endogenous to an important plant pathogen, enabling further exploration of gene regulation on both sides of the host/parasite interaction. We conclude that small RNAs are likely to play a role in regulating the complex developmental processes involved in stripe rust pathogenicity.


Subject(s)
Basidiomycota/genetics , RNA, Fungal , RNA, Small Interfering , Triticum/microbiology , Chromosome Mapping , Computational Biology/methods , Gene Expression Regulation, Fungal , Genetic Loci , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Nucleic Acid Conformation , Plant Diseases/microbiology , RNA Interference , RNA, Messenger/chemistry , RNA, Messenger/genetics , Sequence Analysis, RNA
14.
BMC Genomics ; 16: 579, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26238441

ABSTRACT

BACKGROUND: The cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi. RESULTS: Approximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development. CONCLUSIONS: Partial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.


Subject(s)
Basidiomycota/genetics , Gene Silencing , Gene-Environment Interaction , Genes, Fungal , Basidiomycota/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Glycolysis/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Plant Diseases/virology , Transcription, Genetic , Transcriptome , Triticum/microbiology , Triticum/virology
15.
PLoS One ; 8(6): e67217, 2013.
Article in English | MEDLINE | ID: mdl-23805300

ABSTRACT

Epigenetic cellular memory mechanisms that involve polycomb and trithorax group of proteins are well conserved across metazoans. The cis-acting elements interacting with these proteins, however, are poorly understood in mammals. In a directed search we identified a potential polycomb responsive element with 25 repeats of YY1 binding motifthatwe designate PRE-PIK3C2B as it occurs in the first intron of human PIK3C2B gene. It down regulates reporter gene expression in HEK cells and the repression is dependent on polycomb group of proteins (PcG). We demonstrate that PRE-PIK3C2B interacts directly with YY1 in vitro and recruits PRC2 complex in vivo. The localization of PcG proteins including YY1 to PRE-PIK3C2B in HEK cells is decreased on knock-down of either YY1 or SUZ12. Endogenous PRE-PIK3C2B shows bivalent marking having H3K27me3 and H3K4me3 for repressed and active state respectively. In transgenic Drosophila, PRE-PIK3C2B down regulates mini-white expression, exhibits variegation and pairing sensitive silencing (PSS), which has not been previously demonstrated for mammalian PRE. Taken together, our results strongly suggest that PRE-PIK3C2B functions as a site of interaction for polycomb proteins.


Subject(s)
Class II Phosphatidylinositol 3-Kinases/biosynthesis , Genome, Human/physiology , Introns/physiology , Polycomb Repressive Complex 2/metabolism , Response Elements/physiology , YY1 Transcription Factor/metabolism , Animals , Animals, Genetically Modified , Class II Phosphatidylinositol 3-Kinases/genetics , Drosophila , HEK293 Cells , Humans , Neoplasm Proteins , Polycomb Repressive Complex 2/genetics , Transcription Factors , YY1 Transcription Factor/genetics
16.
Stud Health Technol Inform ; 125: 373-8, 2007.
Article in English | MEDLINE | ID: mdl-17377306

ABSTRACT

Training medical personnel to maintain readiness for medical emergencies and combat-related operations is a critical problem. Distance learning solutions are required for enabling effective training while minimizing time away from the important on-the-job duties of providing quality medical care. Simulation-based training can significantly benefit learners by providing opportunities for hands on training. A simulation by itself, however, is not sufficient to enable learning. It must be accompanied by opportunities for reflection and a chance for learners to try their skills under different conditions. This means a simulation-based training course should include several scenarios. The high cost of developing and administering training scenarios renders this infeasible. We have developed a simulation-based training framework called SimCore that incorporates intelligent, automated assessment and coaching in support of self-paced learning. This reduces the need for human facilitators. A key feature of this framework is an authoring tool that supports rapid scenario development and customization and is designed for use by subject matter experts and course developers. This brings down the cost of scenario development. The system has been designed to interface easily with third-party simulators, with minimal effort. It also includes a Flash-based simulator that can be played on a web-browser. A beta version of SimCore is currently being distributed for evaluation.


Subject(s)
Computer Simulation , Computer-Assisted Instruction , Health Personnel/education , Computer Systems , Disaster Planning , Inservice Training/methods , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...