Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Nucleic Acids Res ; 52(2): 525-547, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38084926

ABSTRACT

DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration. In mammalian cells, the repair of DPCs mainly relies on the proteolytic activities of SPRTN and the 26S proteasome, complemented by other enzymes including TDP1/2 and the MRN complex, and many of the activities involved are essential, restricting genetic approaches. For many years, the study of DPC repair in mammalian cells was hindered by the lack of standardised assays, most notably assays that reliably quantified the proteins or proteolytic fragments covalently bound to DNA. Recent interest in the field has spurred the development of several biochemical methods for DPC analysis. Here, we critically analyse the latest techniques for DPC isolation and the benefits and drawbacks of each. We aim to assist researchers in selecting the most suitable isolation method for their experimental requirements and questions, and to facilitate the comparison of results across different laboratories using different approaches.


Subject(s)
DNA Damage , Proteins , Animals , Proteins/genetics , DNA/genetics , DNA/metabolism , DNA Replication , DNA Repair , Mammals/genetics
2.
Mol Cell ; 83(23): 4197-4199, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065058

ABSTRACT

In this issue of Molecular Cell, Rahmanto et al.1 and Zhao et al.2 demonstrate that RNA-protein crosslinks contribute to formaldehyde toxicity by blocking protein synthesis. Furthermore, they identify a ubiquitin-mediated degradation system for RNA-protein crosslink resolution in eukaryotes.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA/genetics , Ubiquitin/metabolism , Valosin Containing Protein/metabolism
3.
Nucleic Acids Res ; 51(11): 5396-5413, 2023 06 23.
Article in English | MEDLINE | ID: mdl-36971114

ABSTRACT

The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.


Subject(s)
Ataxin-3 , Chromatin , DNA Replication , Humans , Ataxin-3/genetics , Ataxin-3/metabolism , Chromatin/genetics , DNA Damage , Machado-Joseph Disease/genetics , Repressor Proteins/metabolism
4.
Cell Chem Biol ; 30(1): 3-21, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36640759

ABSTRACT

Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.


Subject(s)
Enzyme Inhibitors , Neoplasms , Animals , Humans , Cell Cycle Proteins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mammals/metabolism , Neoplasms/drug therapy , Ubiquitin/metabolism , Valosin Containing Protein/metabolism , Adenosine Triphosphatases/metabolism
5.
Nat Cell Biol ; 24(1): 62-73, 2022 01.
Article in English | MEDLINE | ID: mdl-35013556

ABSTRACT

Poly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.


Subject(s)
Chromatin/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Valosin Containing Protein/metabolism , Cell Line, Tumor , Disulfiram/analogs & derivatives , Disulfiram/pharmacology , HCT116 Cells , HeLa Cells , Humans , MCF-7 Cells , Neoplasms/drug therapy , Nuclear Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Inhibitors of Activated STAT/metabolism , Sumoylation , Transcription Factors/metabolism , Ubiquitination
6.
Autophagy ; 18(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: mdl-33726628

ABSTRACT

TEX264 (testes expressed gene 264) is a single-pass transmembrane protein, consisting of an N-terminal hydrophobic region, a gyrase inhibitory (GyrI)-like domain, and a loosely structured C terminus. TEX264 was first identified as an endoplasmic reticulum (ER)-resident Atg8-family-binding protein that mediates the degradation of portions of the ER during starvation (i.e., reticulophagy). More recently, TEX264 was identified as a cofactor of VCP/p97 ATPase that promotes the repair of covalently trapped TOP1 (DNA topoisomerase 1)-DNA crosslinks. This review summarizes the current knowledge of TEX264 as a protein with roles in both autophagy and DNA repair and provides an evolutionary and structural analysis of GyrI proteins. Based on our phylogenetic analysis, we provide evidence that TEX264 is a member of a large superfamily of GyrI-like proteins that evolved in bacteria and are present in metazoans, including invertebrates and chordates.Abbreviations: Atg8: autophagy related 8; Atg39: autophagy related 39; Cdc48: cell division cycle 48; CGAS: cyclic GMP-AMP synthase; DPC: DNA-protein crosslinks; DSB: DNA double-strand break; ER: endoplasmic reticulum; GyrI: gyrase inhibitory domain; LRR: leucine-rich repeat; MAFFT: multiple alignment using fast Fourier transform; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; STUBL: SUMO targeted ubiquitin ligase; SUMO: small ubiquitin-like modifier; TEX264: testis expressed gene 264; TOP1cc: topoisomerase 1-cleavage complex; UBZ: ubiquitin binding Zn finger domain; VCP: valosin containing protein.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Autophagy/genetics , Autophagy-Related Protein 8 Family/genetics , DNA , DNA Repair , Endoplasmic Reticulum Stress/genetics , Phylogeny , Ubiquitin/genetics
7.
STAR Protoc ; 2(4): 100978, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34888531

ABSTRACT

DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).


Subject(s)
Bromodeoxyuridine/chemistry , DNA, Single-Stranded , Microscopy, Fluorescence/methods , Bromodeoxyuridine/metabolism , Cell Line, Tumor , DNA, Single-Stranded/analysis , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Genomic Instability/genetics , Humans
8.
Cell Rep ; 37(10): 110080, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879279

ABSTRACT

DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.


Subject(s)
DNA Damage , DNA Repair , DNA, Neoplasm/metabolism , DNA-Binding Proteins/metabolism , Genomic Instability , Sumoylation , DNA Breaks, Double-Stranded , DNA Replication , DNA, Neoplasm/biosynthesis , DNA, Neoplasm/genetics , DNA-Binding Proteins/genetics , Female , HEK293 Cells , HeLa Cells , Homologous Recombination , Humans , Male , Proteolysis , Synthetic Lethal Mutations
9.
Nat Commun ; 12(1): 6959, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845229

ABSTRACT

Efficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homoeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2, the F-box component of the SCFSKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1, leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. The Cancer Genome Atlas (TCGA) data reveal that this mechanism is hijacked in many cancers, potentially allowing cancer cells to sustain uncontrolled proliferation.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , S Phase/genetics , S-Phase Kinase-Associated Proteins/genetics , A549 Cells , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p27/metabolism , DNA Damage , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Phase Kinase-Associated Proteins/antagonists & inhibitors , S-Phase Kinase-Associated Proteins/metabolism , Sf9 Cells , Signal Transduction , Spodoptera , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
10.
Cell Rep ; 35(8): 109153, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34038735

ABSTRACT

The ATPase p97 is a central component of the ubiquitin-proteasome degradation system. p97 uses its ATPase activity and co-factors to extract ubiquitinated substrates from different cellular locations, including DNA lesions, thereby regulating DNA repair pathway choice. Here, we find that p97 physically and functionally interacts with the MRE11-RAD50-NBS1 (MRN) complex on chromatin and that inactivation of p97 blocks the disassembly of the MRN complex from the sites of DNA damage upon ionizing radiation (IR). The inhibition of p97 function results in excessive 5'-DNA end resection mediated by MRE11 that leads to defective DNA repair and radiosensitivity. In addition, p97 inhibition by the specific small-molecule inhibitor CB-5083 increases tumor cell killing following IR both in vitro and in vivo. Mechanistically, this is mediated via increased MRE11 nuclease accumulation. This suggests that p97 inhibitors might be exploited to improve outcomes for radiotherapy patients.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Death/genetics , DNA/genetics , MRE11 Homologue Protein/metabolism , Nuclear Proteins/metabolism , Radiation, Ionizing , Humans
11.
Biochem Soc Trans ; 49(3): 1251-1263, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34003246

ABSTRACT

Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.


Subject(s)
DNA Damage , Hypoxia/genetics , Neoplasms/genetics , Signal Transduction/genetics , Unfolded Protein Response/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Humans , Hypoxia/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
12.
Cell Death Dis ; 12(2): 165, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558481

ABSTRACT

The human MRE11/RAD50/NBS1 (MRN) complex plays a crucial role in sensing and repairing DNA DSB. MRE11 possesses dual 3'-5' exonuclease and endonuclease activity and forms the core of the multifunctional MRN complex. We previously identified a C-terminally truncated form of MRE11 (TR-MRE11) associated with post-translational MRE11 degradation. Here we identified SPRTN as the essential protease for the formation of TR-MRE11 and characterised the role of this MRE11 form in its DNA damage response (DDR). Using tandem mass spectrometry and site-directed mutagenesis, the SPRTN-dependent cleavage site for MRE11 was identified between 559 and 580 amino acids. Despite the intact interaction of TR-MRE11 with its constitutive core complex proteins RAD50 and NBS1, both nuclease activities of truncated MRE11 were dramatically reduced due to its deficient binding to DNA. Furthermore, lack of the MRE11 C-terminal decreased HR repair efficiency, very likely due to abolished recruitment of TR-MRE11 to the sites of DNA damage, which consequently led to increased cellular radiosensitivity. The presence of this DNA repair-defective TR-MRE11 could explain our previous finding that the high MRE11 protein expression by immunohistochemistry correlates with improved survival following radical radiotherapy in bladder cancer patients.


Subject(s)
DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , MRE11 Homologue Protein/metabolism , Radiation Tolerance , Urinary Bladder Neoplasms/radiotherapy , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/radiation effects , DNA-Binding Proteins/genetics , G2 Phase Cell Cycle Checkpoints/radiation effects , HEK293 Cells , Humans , MRE11 Homologue Protein/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteolysis , Substrate Specificity , Urinary Bladder Neoplasms/enzymology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
13.
Commun Biol ; 4(1): 11, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33398053

ABSTRACT

Proteins covalently attached to DNA, also known as DNA-protein crosslinks (DPCs), are common and bulky DNA lesions that interfere with DNA replication, repair, transcription and recombination. Research in the past several years indicates that cells possess dedicated enzymes, known as DPC proteases, which digest the protein component of a DPC. Interestingly, DPC proteases also play a role in proteolysis beside DPC repair, such as in degrading excess histones during DNA replication or controlling DNA replication checkpoints. Here, we discuss the importance of DPC proteases in DNA replication, genome stability and their direct link to human diseases and cancer therapy.


Subject(s)
DNA-Binding Proteins/metabolism , Genomic Instability , Aspartic Acid Proteases/metabolism , DNA Damage , DNA Replication , Humans , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Receptors, Virus/metabolism
14.
Cell Death Differ ; 28(4): 1333-1346, 2021 04.
Article in English | MEDLINE | ID: mdl-33168956

ABSTRACT

T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage.


Subject(s)
Checkpoint Kinase 1/drug effects , Lung Neoplasms/radiotherapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Radiation Tolerance/drug effects , cdc25 Phosphatases/drug effects , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/radiation effects , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Radiation Tolerance/genetics , Signal Transduction , Survival Rate , Xenograft Model Antitumor Assays , cdc25 Phosphatases/genetics , cdc25 Phosphatases/radiation effects
15.
Trends Biochem Sci ; 46(1): 2-4, 2021 01.
Article in English | MEDLINE | ID: mdl-33183910

ABSTRACT

The protease SPRTN emerged as the essential enzyme for DNA-protein crosslink proteolysis repair. Biochemical and cell biological work indicated that SPRTN is a nonspecific protease. Recent and independent studies from Lou, Stingele, and Ramadan reveal that SPRTN activity is modulated via three layers of regulation that make it selective for DNA-protein crosslinks.


Subject(s)
DNA-Binding Proteins/metabolism , Humans
16.
Nucleic Acids Res ; 48(22): 12483-12501, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33166394

ABSTRACT

Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Cycle/genetics , Cell Division/genetics , DNA Replication/genetics , DNA Damage/genetics , G1 Phase/genetics , Humans , S Phase/genetics , Signal Transduction/genetics
17.
Nat Commun ; 11(1): 1274, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152270

ABSTRACT

Eukaryotic topoisomerase 1 (TOP1) regulates DNA topology to ensure efficient DNA replication and transcription. TOP1 is also a major driver of endogenous genome instability, particularly when its catalytic intermediate-a covalent TOP1-DNA adduct known as a TOP1 cleavage complex (TOP1cc)-is stabilised. TOP1ccs are highly cytotoxic and a failure to resolve them underlies the pathology of neurological disorders but is also exploited in cancer therapy where TOP1ccs are the target of widely used frontline anti-cancer drugs. A critical enzyme for TOP1cc resolution is the tyrosyl-DNA phosphodiesterase (TDP1), which hydrolyses the bond that links a tyrosine in the active site of TOP1 to a 3' phosphate group on a single-stranded (ss)DNA break. However, TDP1 can only process small peptide fragments from ssDNA ends, raising the question of how the ~90 kDa TOP1 protein is processed upstream of TDP1. Here we find that TEX264 fulfils this role by forming a complex with the p97 ATPase and the SPRTN metalloprotease. We show that TEX264 recognises both unmodified and SUMO1-modifed TOP1 and initiates TOP1cc repair by recruiting p97 and SPRTN. TEX264 localises to the nuclear periphery, associates with DNA replication forks, and counteracts TOP1ccs during DNA replication. Altogether, our study elucidates the existence of a specialised repair complex required for upstream proteolysis of TOP1ccs and their subsequent resolution.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Adducts/metabolism , DNA Topoisomerases, Type I/metabolism , DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Cell Line , DNA Repair , DNA Replication , Epistasis, Genetic , Humans , Membrane Proteins/chemistry , Phosphoric Diester Hydrolases/metabolism , SUMO-1 Protein/metabolism , Sumoylation
18.
EMBO J ; 38(21): e102361, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31613024

ABSTRACT

The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.


Subject(s)
Adenosine Triphosphatases/metabolism , Ataxin-3/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , Homeostasis , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Adenosine Triphosphatases/genetics , Ataxin-3/genetics , Cell Survival , Chromatin/genetics , DNA-Binding Proteins/genetics , Genomic Instability , HEK293 Cells , HeLa Cells , Humans , Nuclear Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitination
19.
Nat Commun ; 10(1): 3142, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316063

ABSTRACT

The SPRTN metalloprotease is essential for DNA-protein crosslink (DPC) repair and DNA replication in vertebrate cells. Cells deficient in SPRTN protease exhibit DPC-induced replication stress and genome instability, manifesting as premature ageing and liver cancer. Here, we provide a body of evidence suggesting that SPRTN activates the ATR-CHK1 phosphorylation signalling cascade during physiological DNA replication by proteolysis-dependent eviction of CHK1 from replicative chromatin. During this process, SPRTN proteolyses the C-terminal/inhibitory part of CHK1, liberating N-terminal CHK1 kinase active fragments. Simultaneously, CHK1 full length and its N-terminal fragments phosphorylate SPRTN at the C-terminal regulatory domain, which stimulates SPRTN recruitment to chromatin to promote unperturbed DNA replication fork progression and DPC repair. Our data suggest that a SPRTN-CHK1 cross-activation loop plays a part in DNA replication and protection from DNA replication stress. Finally, our results with purified components of this pathway further support the proposed model of a SPRTN-CHK1 cross-activation loop.


Subject(s)
Checkpoint Kinase 1/physiology , DNA-Binding Proteins/physiology , Models, Genetic , Animals , Checkpoint Kinase 1/metabolism , DNA Breaks , DNA Replication , DNA-Binding Proteins/metabolism , Genomic Instability , Phosphorylation , Signal Transduction , Zebrafish/genetics , Zebrafish/metabolism
20.
DNA Repair (Amst) ; 71: 198-204, 2018 11.
Article in English | MEDLINE | ID: mdl-30170832

ABSTRACT

DNA-protein crosslinks (DPCs) are a specific type of DNA lesion consisting of a protein covalently and irreversibly bound to DNA, which arise after exposure to physical and chemical crosslinking agents. DPCs can be bulky and thereby pose a barrier to DNA replication and transcription. The persistence of DPCs during S phase causes DNA replication stress and genome instability. The toxicity of DPCs is exploited in cancer therapy: many common chemotherapeutics kill cancer cells by inducing DPC formation. Recent work from several laboratories discovered a specialized repair pathway for DPCs, namely DPC proteolysis (DPCP) repair. DPCP repair is carried out by replication-coupled DNA-dependent metalloproteases: Wss1 in yeast and SPRTN in metazoans. Mutations in SPRTN cause premature ageing and liver cancer in humans and mice; thus, defective DPC repair has great clinical ramifications. In the present review, we will revise the current knowledge on the mechanisms of DPCP repair and on the regulation of DPC protease activity, while highlighting the most significant unresolved questions in the field. Finally, we will discuss the impact of faulty DPC repair on disease and cancer therapy.


Subject(s)
DNA Adducts/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Animals , Cross-Linking Reagents/pharmacology , Cross-Linking Reagents/toxicity , DNA/drug effects , DNA/radiation effects , DNA-Binding Proteins/drug effects , DNA-Binding Proteins/radiation effects , Eukaryota/drug effects , Eukaryota/genetics , Eukaryota/metabolism , Eukaryota/radiation effects , Humans , Proteolysis , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/radiation effects , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...