Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7292, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147449

ABSTRACT

Borate glasses (BG) doped with different amounts of ZnO (0-0.6 mol%) were formed by the traditional melt quenching technique. The different glasses so made were characterized using different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and UV-Vis absorption optical properties. The XRD patterns showed an amorphous structure with one broad peak at 2θ = 29°, while the phonons bands were studied in terms of the FTIR bands. Optical properties of the glasses were studied using UV-Vis absorption spectra in the range 190-1100 nm, in which the prominent band lies at about 261.5 nm of peak position, from which the bandgab (Eg) was calculated from its edge using Tauc's plot, with Eg ~ 3.5 eV. The laser irradiation showed no significant changes in the absorption bands, despite a significant change observed in the amorphous behavior in the XRD pattern. The cell viability was performed for two samples of the BG and 0.6 mol% ZnO doped using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay method. The result showed better cell viability and low toxicity. So, ZnO doped BG can be used in various biomedical applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(1-2): 157-61, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15556434

ABSTRACT

The reactions between [M(3)(CO)(12)], M = Ru and Os, and salicylideneimine-2-thiophenol Schiff base in THF under reflux gave [Ru(CO)(4)(satpH)] and [Os(CO)(3)(satpH(2))] complexes. Structures of the two complexes were proposed on the basis of spectroscopic studies. Magnetic study of [Ru(CO)(4)(satpH)] suggested that a change in oxidation state of the ruthenium atom from zero to +1 was achieved via oxidative addition of the SH group with a proton displacement to give a low-spin d(7) electronic configuration. UV-Vis spectra of the two complexes in different solvents exhibited visible bands due to metal-to-ligand charge transfer. Electrochemical investigation of the free ligand and complexes showed some cathodic and anodic irreversible peaks due to interconversions through electron transfer.


Subject(s)
Osmium/chemistry , Phenols/chemistry , Ruthenium/chemistry , Schiff Bases/chemistry , Electrochemistry , Molecular Structure , Solvents , Spectrum Analysis
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 57A(5): 1017-24, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11374560

ABSTRACT

Reaction of Ru3(CO)12, with 2-(2'-pyridyl)benzimidazole (HPBI) resulted in the formation of Ru(CO)3(HPBI) (I) complex. In presence of pyridine or dipyridine, the two derivatives [Ru(CO)3(HPBI)].Py (II) and [Ru(CO)3(HPBI)].dpy (III) were isolated. The corresponding reactions of Os3(CO)12 yielded only one single product; Os(CO)2(HPBI)2 (IV). Spectroscopic studies of these complexes revealed intramolecular metal to ligand CT interactions. Reactions of RuCl3 with HPBI gave three distinct products; [Ru(HPBI)2Cl2]Cl (V), [Ru(HPBI)(dipy)Cl2]C1 (VI) and [Ru(PBI)2(py)2]Cl (VII). The UV-vis studies indicated the presence of intramolecular ligand to metal CT interactions. Electrochemical investigation of the complexes showed some irreversible, reversible and quasi-reversible redox reactions due to tautomeric interconversions through electron transfer.


Subject(s)
Benzimidazoles/chemistry , Osmium/chemistry , Ruthenium/chemistry , Electrochemistry , Models, Chemical , Molecular Structure , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...