Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19017, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396727

ABSTRACT

The building and construction sector accounts for around 39% of global carbon dioxide emissions and remains a hard-to-abate sector. We use a data-driven analysis of global high-level climate action on emissions reduction in the building sector using 256,717 English-language tweets across a 13-year time frame (2009-2021). Using natural language processing and network analysis, we show that public sentiments and emotions on social media are reactive to these climate policy actions. Between 2009-2012, discussions around green building-led emission reduction efforts were highly influential in shaping the online public perceptions of climate action. From 2013 to 2016, communication around low-carbon construction and energy efficiency significantly influenced the online narrative. More significant interactions on net-zero transition, climate tech, circular economy, mass timber housing and climate justice in 2017-2021 shaped the online climate action discourse. We find positive sentiments are more prominent and recurrent and comprise a larger share of the social media conversation. However, we also see a rise in negative sentiment by 30-40% following popular policy events like the IPCC report launches, the Paris Agreement and the EU Green Deal. With greater online engagement and information diffusion, social and environmental justice topics emerge in the online discourse. Continuing such shifts in online climate discourse is pivotal to a more just and people-centric transition in such hard-to-decarbonise sectors.


Subject(s)
Social Media , Humans , Climate , Carbon Dioxide/analysis , Policy , Communication
2.
Energy Policy ; 164: None, 2022 May.
Article in English | MEDLINE | ID: mdl-35620237

ABSTRACT

This study evaluates the effect of complete nationwide lockdown in 2020 on residential electricity demand across 13 Indian cities and the role of digitalisation using a public smart meter dataset. We undertake a data-driven approach to explore the energy impacts of work-from-home norms across five dwelling typologies. Our methodology includes climate correction, dimensionality reduction and machine learning-based clustering using Gaussian Mixture Models of daily load curves. Results show that during the lockdown, maximum daily peak demand increased by 150-200% as compared to 2018 and 2019 levels for one room-units (RM1), one bedroom-units (BR1) and two bedroom-units (BR2) which are typical for low- and middle-income families. While the upper-middle- and higher-income dwelling units (i.e., three (3BR) and more-than-three bedroom-units (M3BR)) saw night-time demand rise by almost 44% in 2020, as compared to 2018 and 2019 levels. Our results also showed that new peak demand emerged for the lockdown period for RM1, BR1 and BR2 dwelling typologies. We found that the lack of supporting socioeconomic and climatic data can restrict a comprehensive analysis of demand shocks using similar public datasets, which informed policy implications for India's digitalisation. We further emphasised improving the data quality and reliability for effective data-centric policymaking.

3.
Materials (Basel) ; 13(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126553

ABSTRACT

Liquid composite moulding (LCM) of plant fibre composites has gained much attention for the development of structural biobased composites. To produce quality composites, better understanding of the resin impregnation process and flow behaviour in plant fibre reinforcements is vital. By reviewing the literature, we aim to identify key plant fibre reinforcement-specific factors that influence, if not govern, the mould filling stage during LCM of plant fibre composites. In particular, the differences in structure (physical and biochemical) for plant and synthetic fibres, their semi-products (i.e., yarns and rovings), and their mats and textiles are shown to have a perceptible effect on their compaction, in-plane permeability, and processing via LCM. In addition to examining the effects of dual-scale flow, resin absorption, (subsequent) fibre swelling, capillarity, and time-dependent saturated and unsaturated permeability that are specific to plant fibre reinforcements, we also review the various models utilised to predict and simulate resin impregnation during LCM of plant fibre composites.

4.
Sci Rep ; 9(1): 16667, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723185

ABSTRACT

Scanning thermal microscopy is a powerful tool for investigating biological materials and structures like bamboo and its cell walls. Alongside nanoscale topographical information, the technique reveals local variations in thermal conductivity of this elegant natural material. We observe that at the tissue scale, fibre cells in the scattered vascular tissue would offer preferential pathways for heat transport due to their higher conductivities in both anatomical directions, in comparison to parenchymatic cells in ground tissue. In addition, the transverse orientation offers more resistance to heat flow. Furthermore, we observe each fibre cell to compose of up to ten layers, with alternating thick and thin lamellae in the secondary wall. Notably, we find the thin lamellae to have relatively lower conductivity than the thick lamellae in the fibre direction. This is due to the distinct orientation of cellulose microfibrils within the cell wall layers, and that cellulose microfibrils are highly anisotropic and have higher conductivity along their lengths. Microfibrils in the thick lamellae are oriented almost parallel to the fibre cell axis, while microfibrils in the thin lamellae are oriented almost perpendicular to the cell axis. Bamboo grasses have evolved to rapidly deposit this combination of thick and thin layers, like a polymer composite laminate or cross-laminated timber, for combination of axial and transverse stiffness and strength. However, this architecture is found to have interesting implications on thermal transport in bamboo, which is relevant for the application of engineered bamboo in buildings. We further conclude that scanning thermal microscopy may be a useful technique in plant science research, including for phenotyping studies.


Subject(s)
Cell Wall/physiology , Microscopy, Electron, Scanning/methods , Plant Cells/physiology , Poaceae/physiology , Thermal Conductivity , Thermography/methods , Cell Wall/ultrastructure , Plant Cells/ultrastructure , Poaceae/ultrastructure
5.
Adv Mater ; 30(27): e1707169, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29775504

ABSTRACT

Spider silk is a fascinating material, combining high strength and elasticity that outperforms most synthetic fibers. Another intriguing feature of spider silk is its ability to "supercontract," shrinking up to 50% when exposed to water. This is likely on account of the entropy-driven recoiling of secondary structured proteins when water penetrates the spider silk. In contrast, humidity-driven contraction in synthetic fibers is difficult to achieve. Here, inspired by the spider silk model, a supercontractile fiber (SCF), which contracts up to 50% of its original length at high humidity, comparable to spider silk, is reported. The fiber exhibits up to 300% uptake of water by volume, confirmed via environmental scanning electron microscopy. Interestingly, the SCF exhibits tunable mechanical properties by varying humidity, which is reflected by the prolonged failure strain and the reversible damping capacity. This smart supramolecular fiber material provides a new opportunity of fabricating biomimetic muscle for diverse applications.

6.
Cellulose (Lond) ; 25(6): 3255-3266, 2018.
Article in English | MEDLINE | ID: mdl-31007420

ABSTRACT

Natural materials are a focus for development of low carbon products for a variety of applications. To utilise these materials, processing is required to meet acceptable industry standards. Laminated bamboo is a commercial product that is currently being explored for structural applications, however there is a gap in knowledge about the effects of commercial processing on the chemical composition. The present study utilised interdisciplinary methods of analysis to investigate the effects of processing on the composition of bamboo. Two common commercial processing methods were investigated: bleaching (chemical treatment) and caramelisation (hygrothermal treatment). The study indicated that the bleaching process results in a more pronounced degradation of the lignin in comparison to the caramelised bamboo. This augments previous research, which has shown that the processing method (strip size) and treatment may affect the mechanical properties of the material in the form of overall strength, failure modes and crack propagation. The study provides additional understanding of the effects of processing on the properties of bamboo.

7.
J Exp Bot ; 68(16): 4497-4516, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28981787

ABSTRACT

From the stems of agricultural crops to the structural trunks of trees, studying the mechanical behaviour of plant stems is critical for both commerce and science. Plant scientists are also increasingly relying on mechanical test data for plant phenotyping. Yet there are neither standardized methods nor systematic reviews of current methods for the testing of herbaceous stems. We discuss the architecture of plant stems and highlight important micro- and macrostructural parameters that need to be controlled and accounted for when designing test methodologies, or that need to be understood in order to explain observed mechanical behaviour. Then, we critically evaluate various methods to test structural properties of stems, including flexural bending (two-, three-, and four-point bending) and axial loading (tensile, compressive, and buckling) tests. Recommendations are made on best practices. This review is relevant to fundamental studies exploring plant biomechanics, mechanical phenotyping of plants, and the determinants of mechanical properties in cell walls, as well as to application-focused studies, such as in agro-breeding and forest management projects, aiming to understand deformation processes of stem structures. The methods explored here can also be extended to other elongated, rod-shaped organs (e.g. petioles, midribs, and even roots).


Subject(s)
Plant Stems/chemistry , Plant Stems/physiology , Anisotropy , Biomechanical Phenomena , Plant Cells/chemistry , Tensile Strength , Time Factors
8.
Proc Natl Acad Sci U S A ; 114(31): 8163-8168, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28696304

ABSTRACT

Inspired by biological systems, we report a supramolecular polymer-colloidal hydrogel (SPCH) composed of 98 wt % water that can be readily drawn into uniform ([Formula: see text]6-[Formula: see text]m thick) "supramolecular fibers" at room temperature. Functionalized polymer-grafted silica nanoparticles, a semicrystalline hydroxyethyl cellulose derivative, and cucurbit[8]uril undergo aqueous self-assembly at multiple length scales to form the SPCH facilitated by host-guest interactions at the molecular level and nanofibril formation at colloidal-length scale. The fibers exhibit a unique combination of stiffness and high damping capacity (60-70%), the latter exceeding that of even biological silks and cellulose-based viscose rayon. The remarkable damping performance of the hierarchically structured fibers is proposed to arise from the complex combination and interactions of "hard" and "soft" phases within the SPCH and its constituents. SPCH represents a class of hybrid supramolecular composites, opening a window into fiber technology through low-energy manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL
...