Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Cogn ; 24(2): 251-266, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33598770

ABSTRACT

This study investigated the behavioral and neural indices of detecting facial familiarity and facial emotions in human faces by dogs. Awake canine fMRI was used to evaluate dogs' neural response to pictures and videos of familiar and unfamiliar human faces, which contained positive, neutral, and negative emotional expressions. The dog-human relationship was behaviorally characterized out-of-scanner using an unsolvable task. The caudate, hippocampus, and amygdala, mainly implicated in reward, familiarity and emotion processing, respectively, were activated in dogs when viewing familiar and emotionally salient human faces. Further, the magnitude of activation in these regions correlated with the duration for which dogs showed human-oriented behavior towards a familiar (as opposed to unfamiliar) person in the unsolvable task. These findings provide a bio-behavioral basis for the underlying markers and functions of human-dog interaction as they relate to familiarity and emotion in human faces.


Subject(s)
Emotions , Recognition, Psychology , Animals , Brain , Brain Mapping/veterinary , Dogs , Facial Expression , Humans , Interpersonal Relations
2.
Learn Behav ; 46(4): 561-573, 2018 12.
Article in English | MEDLINE | ID: mdl-30349971

ABSTRACT

Functional magnetic resonance imaging (fMRI) has emerged as a viable method to study the neural processing underlying cognition in awake dogs. Working dogs were presented with pictures of dog and human faces. The human faces varied in familiarity (familiar trainers and unfamiliar individuals) and emotional valence (negative, neutral, and positive). Dog faces were familiar (kennel mates) or unfamiliar. The findings revealed adjacent but separate brain areas in the left temporal cortex for processing human and dog faces in the dog brain. The human face area (HFA) and dog face area (DFA) were both parametrically modulated by valence indicating emotion was not the basis for the separation. The HFA and DFA were not influenced by familiarity. Using resting state fMRI data, functional connectivity networks (connectivity fingerprints) were compared and matched across dogs and humans. These network analyses found that the HFA mapped onto the human fusiform area and the DFA mapped onto the human superior temporal gyrus, both core areas in the human face processing system. The findings provide insight into the evolution of face processing.


Subject(s)
Dogs/physiology , Facial Expression , Facial Recognition/physiology , Recognition, Psychology/physiology , Temporal Lobe/physiology , Animals , Brain Mapping , Dogs/psychology , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...