Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Ultrasound Med ; 43(1): 127-136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37842972

ABSTRACT

OBJECTIVES: Topically applied macromolecules have the potential to provide vision-saving treatments for many of the leading causes of blindness in the United States. The aim of this study was to determine if ultrasound can be applied to increase transcorneal drug delivery of macromolecules without dangerously overheating surrounding ocular tissues. METHODS: Dissected corneas of adult rabbits were placed in a diffusion cell between a donor compartment filled with a solution of macromolecules (40, 70 kDa, or 150 kDa) and a receiver compartment. Each cornea was exposed to the drug solution for 60 minutes, with the experimental group receiving 5 minutes of continuous ultrasound or 10 minutes of pulsed ultrasound at a 50% duty cycle (pulse repetition frequency of 500 ms on, 500 ms off) at the beginning of treatment. Unfocused circular ultrasound transducers were operated at 0.5 to 1 W/cm2 intensity and at 600 kHz frequency. RESULTS: The greatest increase in transcorneal drug delivery seen was 1.2 times (P < .05) with the application of pulsed ultrasound at 0.5 W/cm2 and 600 kHz for 10 minutes with 40 kDa macromolecules. Histological analysis revealed structural damage mostly in the corneal epithelium, with most damage occurring at the epithelial surface. CONCLUSIONS: This study suggests that ultrasound may be used for enhancing transcorneal delivery of macromolecules of lower molecular weights. Further research is needed on the long-term effects of ultrasound parameters used in this study on human ocular tissues.


Subject(s)
Cornea , Ultrasonic Therapy , Animals , Humans , Rabbits , Cornea/diagnostic imaging , Cornea/metabolism , Ultrasonography , Ultrasonic Waves , Permeability
2.
Cancers (Basel) ; 15(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36672347

ABSTRACT

Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.

3.
Int J Hyperthermia ; 39(1): 998-1009, 2022.
Article in English | MEDLINE | ID: mdl-35876089

ABSTRACT

OBJECTIVE: Thermosensitive liposomes (TSL) and other triggered drug delivery systems (DDS) are promising therapeutic strategies for targeted drug delivery. However, successful designs with candidate drugs depend on many variables, including nanoparticle formulation, drug properties, and cancer cell properties. We developed a computational model based on experimental data to predict the potential efficacies of drugs when used with triggered DDS, such as TSL. METHODS: A computer model based on the Krogh cylinder was developed to predict uptake and cell survival with four anthracyclines when delivered by intravascular triggered DDS (e.g., TSL): doxorubicin (DOX), idarubicin (IDA), pirarubicin (PIR), and aclarubicin (ACLA). We simulated three tumor types derived from SVR angiosarcoma, LLC lung cancer, or SCC-1 oral carcinoma cells. In vitro cellular drug uptake and cytotoxicity data were obtained experimentally and incorporated into the model. RESULTS: For all three cell lines, ACLA and IDA had the fastest cell uptake, with slower uptake for DOX and PIR. Cytotoxicity was highest for IDA and lowest for ACLA. The computer model predicted the highest tumor drug uptake for ACLA and IDA, resulting from their rapid cell uptake. Overall, IDA was most effective and produced the lowest tumor survival fraction, with DOX being the second best. Perivascular drug penetration was reduced for drugs with rapid cell uptake, potentially limiting delivery to cancer cells distant from the vasculature. CONCLUSION: Combining simple in vitro experiments with a computer model could provide a powerful screening tool to evaluate the potential efficacy of candidate investigative drugs preceding TSL encapsulation and in vivo studies.


Subject(s)
Liposomes , Nanoparticles , Antibiotics, Antineoplastic , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Nanoparticles/therapeutic use
4.
Cancers (Basel) ; 14(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35267630

ABSTRACT

Thermosensitive liposomal doxorubicin (TSL-Dox) combined with localized hyperthermia enables targeted drug delivery. Tumor drug uptake occurs only during hyperthermia. We developed a novel method for removal of systemic TSL-Dox remaining after hyperthermia-triggered delivery to reduce toxicities. The carotid artery and jugular vein of Norway brown rats carrying two subcutaneous BN-175 tumors were catheterized. After allowing the animals to recover, TSL-Dox was infused at 7 mg/kg dose. Drug delivery to one of the tumors was performed by inducing 15 min microwave hyperthermia (43 °C). At the end of hyperthermia, an extracorporeal circuit (ECC) comprising a heating module to release drug from TSL-Dox followed by an activated carbon filter to remove free drug was established for 1 h (n = 3). A computational model simulated TSL-Dox pharmacokinetics, including ECC filtration, and predicted cardiac Dox uptake. In animals receiving ECC, we were able to remove 576 ± 65 mg of Dox (29.7 ± 3.7% of the infused dose) within 1 h, with a 2.9-fold reduction of plasma AUC. Fluorescent monitoring enabled real-time quantification of blood concentration and removed drug. Computational modeling predicted that up to 59% of drug could be removed with an ideal filter, and that cardiac uptake can be reduced up to 7×. We demonstrated removal of drug remaining after tumor delivery, reduced plasma AUC, and reduced cardiac uptake, suggesting reduced toxicity.

5.
IEEE Open J Eng Med Biol ; 2: 187-197, 2021.
Article in English | MEDLINE | ID: mdl-34734189

ABSTRACT

GOAL: The impact of hyperthermia (HT) method on tumor drug uptake with thermosensitive liposomes (TSL) is not well understood. METHODS: We created realistic three-dimensional (3-D) computer models that simulate TSL-encapsulated doxorubicin (TSL-DOX) delivery in mouse tumors with three HT methods (thermistor probe (T), laser (L) and water bath (WB), at 15 min and 60 min HT duration), with corroborating in vivo studies. RESULTS: Average computer model-predicted tumor drug concentrations (µg/g) were 8.8(T, 15 min), 21.0(T, 60 min), 14.1(L, 15 min), 25.2(L, 60 min), 9.4(WB, 15 min), and 8.7(WB, 60 min). Tumor fluorescence was increased by 2.6 × (T) and 1.6 × (L) when HT duration was extended from 15 to 60 min (p < 0.05), with no increase for WB HT. Pharmacokinetic analysis confirmed that water bath HT causes rapid depletion of encapsulated TSL-DOX in systemic circulation due to the large heated tissue volume. CONCLUSIONS: Untargeted large volume HT causes poor tumor drug uptake from TSL.

6.
Theranostics ; 11(15): 7276-7293, 2021.
Article in English | MEDLINE | ID: mdl-34158850

ABSTRACT

Effective drug delivery in brain tumors remains a major challenge in oncology. Although local hyperthermia and stimuli-responsive delivery systems, such as thermosensitive liposomes, represent promising strategies to locally enhance drug delivery in solid tumors and improve outcomes, their application in intracranial malignancies remains unexplored. We hypothesized that the combined abilities of closed-loop trans-skull Magnetic Resonance Imaging guided Focused Ultrasound (MRgFUS) hyperthermia with those of thermosensitive drugs can alleviate challenges in drug delivery and improve survival in gliomas. Methods: To conduct our investigations, we first designed a closed loop MR-guided Focused Ultrasound (MRgFUS) system for localized trans-skull hyperthermia (ΔT < 0.5 °C) in rodents and established safety thresholds in healthy mice. To assess the abilities of the developed system and proposed therapeutic strategy for FUS-triggered chemotherapy release we employed thermosensitive liposomal Dox (TSL-Dox) and tested it in two different glioma tumor models (F98 in rats and GL261 in mice). To quantify Dox delivery and changes in the transvascular transport dynamics in the tumor microenvironment we combined fluorescent microscopy, dynamic contrast enhanced MRI (DCE-MRI), and physiologically based pharmacokinetic (PBPK) modeling. Lastly, to assess the therapeutic efficacy of the system and of the proposed therapeutic strategy we performed a survival study in the GL261 glioma bearing mice. Results: The developed closed-loop trans-skull MRgFUS-hyperthermia system that operated at 1.7 MHz, a frequency that maximized the brain (FUS-focus) to skull temperature ratio in mice, was able to attain and maintain the desired focal temperature within a narrow range. Histological evidence (H&E and Nissl) suggests that focal temperature at 41.5 ± 0.5 °C for 10 min is below the threshold for tissue damage. Quantitative analysis of doxorubicin delivery from TSLs with MRgFUS-hyperthermia demonstrated 3.5-fold improvement in cellular uptake in GL261 glioma mouse tumors (p < 0.001) and 5-fold increase in delivery in F98 glioma rat tumors (p < 0.05), as compared to controls (TSL-Dox-only). Moreover, PBPK modeling of drug transport that was calibrated using the experimental data indicated that thermal stress could lead to significant improvement in the transvascular transport (2.3-fold increase in the vessel diffusion coefficient; P < 0.001), in addition to promoting targeted Dox release. Prospective experimental investigations with DCE-MRI during FUS-hyperthermia, supported these findings and provided evidence that moderate thermal stress (≈41 °C for up to 10 min) can promote acute changes in the vascular transport dynamics in the brain tumor microenvironment (Ktrans value for control vs. FUS was 0.0097 and 0.0148 min-1, respectively; p = 0.026). Crucially, survival analysis demonstrated significant improvement in the survival in the TSL-Dox-FUS group as compared to TSL-Dox-only group (p < 0.05), providing supporting evidence on the therapeutic potential of the proposed strategy. Conclusions: Our investigations demonstrated that spatially controlled thermal stress can be attained and sustained in the mouse brain, using a trans-skull closed-loop MRgFUS system, and used to promote the effective delivery of chemotherapy in gliomas from thermosensitive drugs. This system also allowed us to conduct mechanistic investigations that resulted in the refinement of our understanding on the role of thermal stress in augmenting mass and drug transport in brain tumors. Overall, our study established a new paradigm for effective drug delivery in brain tumors based on closed-loop ultrasound-mediated thermal stress and thermosensitive drugs.


Subject(s)
Brain Neoplasms/therapy , Doxorubicin , Drug Delivery Systems , Glioma/therapy , Hyperthermia, Induced , Skull , Ultrasonic Therapy , Animals , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Female , Mice
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5021-5024, 2020 07.
Article in English | MEDLINE | ID: mdl-33019114

ABSTRACT

Thermosensitive liposomes (TSL) are nanoparticles that can encapsulate therapeutic drugs, and release those drugs when exposed to hyperthermic temperatures (>40 °C). Combined with localized hyperthermia, TSL enable focused drug delivery. In this study, we created a three-dimensional (3D) computer model for simulating delivery with TSL-encapsulated doxorubicin (TSL-Dox) to mouse tumors. A mouse hind limb was scanned by a 3D scanner and the resulting geometry was imported into finite element modeling software, with a virtual tumor added. Then, heating by a surface probe was simulated. Further, a drug delivery model was coupled to the heat transfer model to simulate drug delivery kinetics. For comparison, experimental studies in gel phantoms and in vivo fluorescence imaging studies in mice carrying lung tumor xenografts were performed. We report the tissue temperature profile, drug concentration profile and compare the experimental studies with the computer model. The thermistor produced very localized heating that resulted in highest drug delivery to regions near the probe. The average tumor temperature was 38.2˚C (range 34.4-43.4˚C), and produced an average tumor drug concentration of 11.8 µg/g (0.3-28.1 µg/g) after 15 min heating, and 25.6 µg/g (0.3-52 µg/g), after 60 min heating. The computer model reproduced the temperature profile compared to phantom experiments (mean error 0.71 °C, range 0.59-1.25 °C), as well as drug delivery profile as compared to in vivo studies. Our results suggest feasibility of using this approach to model drug delivery in preclinical studies with accurate model geometry.


Subject(s)
Hyperthermia, Induced , Liposomes , Animals , Antibiotics, Antineoplastic/therapeutic use , Computer Simulation , Drug Delivery Systems , Mice
8.
Cryobiology ; 67(2): 201-13, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23867079

ABSTRACT

Freezing tumours and ablating it using cryosurgery is becoming a popular surgical procedure for treatment of carcinomas. In order to improve the efficiency of the cryosurgical procedure different approaches have been implemented till now, e.g., injecting high thermal conductivity fluid inside the tumour, low latent heat fluids inside the tumour prior to cryosurgery etc. These techniques improve the cryosurgical process to some extent but lack in minimising the damage to the surrounding healthy tissues. In this study, a novel concept is proposed which advocates the use of solutions with specific thermophysical properties around the interface of tumour. Numerical modelling has been done to determine the location of the ice fronts in the presence of this solution around the boundary of the tumour. It is noticed that in the presence of solution layer, owing to its distinct thermophysical properties like low thermal conductivity, not only the cellular destruction is enhanced but also the damage to the surrounding healthy tissue is minimised. Further, results indicate that this strategy leads to a faster ablation rate reducing the surgical time immensely. Also, an optimal offset, the minimum distance between the tip of cryoprobe and the boundary of the tumour, is identified for a given tumour radius with a given active length which gives maximum tumour necrosis in less time. This optimal offset which has been identified for each case will help the surgeons in proper planning of cryosurgery and improving the effectiveness of this technique greatly, making it a better treatment modality than its counterparts in many ways. It is also observed that for a 2 mm increase in activelength of the cryoprobe, the decrease in optimal offset is approximately 1 mm, i.e. optimal offset decreases linearly with an increase in the activelength for a given radius of the tumour. Also, for tumour with different radii, ranging between 10 mm to 15 mm, with same active length, the time taken for complete ablation by the larger tumour is nearly 2.7 times the time taken by the smaller one for every 2.5 mm increase in the tumour radius.


Subject(s)
Cryosurgery/methods , Neoplasms/surgery , Algorithms , Computer Simulation , Cryosurgery/instrumentation , Equipment Design , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...