Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1152985, 2023.
Article in English | MEDLINE | ID: mdl-37396348

ABSTRACT

Streptomyces is a group of microbes known for antibiotic production and has contributed to more than 70% of present commercially available antibiotics. These antibiotics are important in the management, protection, and treatment of chronic illnesses. In the present study, the isolated S. tauricus strain from mangrove soil in Mangalore, India (GenBank accession number: MW785875) was subjected for differential cultural characterization, phenotype involving brown pigmentation, filamentous mycelia, and ash-colored spore production was observed using field emission scanning electron microscopy (FESEM) analysis revealing filamentous mycelia possessing a straight spore chain. Spores were visualized as elongated, rod-shaped, smooth surfaces with curved edges. After optimized growth conditions for S. tauricus on starch-casein agar medium, the GC/MS analysis of S. tauricus intracellular extract detected bioactive compounds reported for pharmacological applications. Analyzed using the NIST library, most of the bioactive compounds identified in intracellular extract had molecular weights of less than 1 kDa. On the PC3 cell line, the Sephadex G-10 partially purified eluted peak protein fraction demonstrated significant anticancer activity. The LCMS analysis revealed the presence of Tryprostatin B, Fumonisin B1, Microcystin LR, and Surfactin C with molecular weights below 1 kDa. This study found that small molecular weight microbial compounds are more effective in a variety of biological applications.

2.
Front Microbiol ; 14: 1096826, 2023.
Article in English | MEDLINE | ID: mdl-36876075

ABSTRACT

The Glutamicibacter group of microbes is known for antibiotic and enzyme production. Antibiotics and enzymes produced by them are important in the control, protection, and treatment of chronic human diseases. In this study, the Glutamicibacter mysorens (G. mysorens) strain MW647910.1 was isolated from mangrove soil in the Mangalore region of India. After optimization of growth conditions for G. mysorens on starch casein agar media, the micromorphology of G. mysorens was found to be spirally coiled spore chain, each spore visualized as an elongated cylindrical hairy appearance with curved edges visualized through Field Emission Scanning Electron Microscopy (FESEM) analysis. The culture phenotype with filamentous mycelia, brown pigmentation, and ash-colored spore production was observed. The intracellular extract of G. mysorens characterized through GCMS analysis detected bioactive compounds reported for pharmacological applications. The majority of bioactive compounds identified in intracellular extract when compared to the NIST library revealed molecular weight ranging below 1kgmole-1. The Sephadex G-10 could result in 10.66 fold purification and eluted peak protein fraction showed significant anticancer activity on the prostate cancer cell line. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed Kinetin-9-ribose and Embinin with a molecular weight below 1 kDa. This study showed small molecular weight bioactive compounds produced from microbial origin possess dual roles, acting as antimicrobial peptides (AMPs) and anticancer peptides (ACPs). Hence, the bioactive compounds produced from microbial origin are a promising source of future therapeutics.

3.
Cell Stress Chaperones ; 20(3): 451-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25624002

ABSTRACT

Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.


Subject(s)
Heat-Shock Proteins, Small/metabolism , Organelles/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Conserved Sequence , Gene Expression , Heat-Shock Proteins, Small/genetics , Molecular Sequence Data , Plant Proteins/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...