Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37960981

ABSTRACT

A biocompatible fluorescence sensor for cysteine detection receives wide appreciation recently, because of its importance in the medical field. Functionalized graphene quantum dots (GQDs) are recently emerging biocompatible quantum dots, which are considered as suitable candidates for biomolecule detection. Motivated by this concept, here we have developed a versatile fluorescent probe based on 3-aminocoumarin (AMC) functionalized GQDs for the detection of cysteine (Cys). Modification on GQD with AMC resulted in a stable fluorescent probe with an enhancement in quantum yield of about 84% and 40 nm redshift in emission peak compared with bare GQD. The modified GQD is then used for the sensitive and selective detection of cysteine in aqueous media. The detection of Cys within the linear range of 50 nM to 1.5 µM was achieved with a detection limit (LOD) of 0.86 nM. Here, the AMC-GQD exhibit a turn-off fluorescence sensing behavior. The quenching mechanism was also explored. The sensing process follows dynamic quenching mechanism, which is attributed to the photoinduced charge transfer from AMC-GQD to Cys. The Stern-Volmer plot, energy-level alignment obtained from cyclic voltammetry measurements and density functional theory predictions give a valid proof for this. Furthermore, the sensor was applied efficiently to the determination of Cys in real water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...