Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Res ; 203: 111807, 2022 01.
Article in English | MEDLINE | ID: mdl-34400163

ABSTRACT

The presence of pharmaceutically active compounds (PhAcs) in water bodies is a major concern due to their persistence, biological activity, and detrimental environmental effects. The present study focuses on the application of pulsed corona plasma technology to degrade such compounds. Three different plasma reactors, namely, sequential flow plasma reactor (SFR), continuous flow top discharge plasma reactor (TDPR) and continuous flow side discharge plasma reactor (SDPR), are designed and fabricated for their performance evaluation with respect to PhAC degradation. In all the reactors, wastewater was discharged as fine droplets for better interaction between the reactive oxidizing species (ROS) generated in the system and the pollutants. Enhanced degradation of the selected pharmaceutical compounds, i.e., diclofenac (DCF) and verapamil hydrochloride (VPL), is achieved with decreased treatment time and lower energy consumption. In SFR reactor water was recycled, whereas in continuous flow reactors hydraulic retention times (HRTs) were varied. The degradation efficiency of DCF (1 mg/L) and VPL (1 mg/L) was 99 % in SDPR, at HRTs of 9 and 12 min, respectively. Deposited energies (SFR- 71 W, TDPR - 92 W, SDPR- 51 W) varied due to the difference in reactor geometries. In the SDPR reactor, 99 % degradation of mixed pollutants with an initial concentration of 10 mg/L was achieved, at a HRT of 21 min. With an input power of 51 W, good energy efficiency (EEO) of 3.8 kWh/m3 and high yield (G) of 256.2 mg/kWh were obtained. . Nitrate formation was reduced by 73.2 % in TDPR and 85.0% in SDPR (32.1-8.6 mg/L) as compared to SFR (32.1 mg/L). The operating cost estimated was 0.71 $/m3, 0.80 $/m3 and 0.67 $/m3 for SFR, TDPR and SDPR, respectively. The results clearly indicate that the continuous flow reactor with side discharge is a viable alternative to traditional plasma reactors.


Subject(s)
Plasma Gases , Water Pollutants, Chemical , Bioreactors , Diclofenac , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 800: 149340, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34399341

ABSTRACT

Pharmaceutically active compounds (PhACs) present in the environment are a great threat to human well-being and the ecosystem. Eventhough recognized as the pharmacy of the world", studies addressing the distribution of PhACs in the Indian environment are scarce. Hence, in the current study, selected PhACs, heavy metals (HMs), and physicochemical parameters (PCPs) were measured from the surface waters of the River Cauvery during the pre- and post-monsoon. PhACs such as caffeine, carbamazepine, and diclofenac were detected in most samples, whereas topiramate, ibuprofen, and verapamil were found only in few stations. In contrast, the distribution of ciprofloxacin, atenolol, and isoprenaline was strongly influenced by the seasonal pattern (p < 0.05). PhACs such as loperamide, glafenine, erythromycin, and gemfibrozil were not detected during the study. Distribution of PhACs based on average concentration (ng/L) are, CBZ (205.62) > CAF (114.09) > DCF (28.51) > CIP (25.23) > ATL (18.86) > IPL (13.91) > PPL (11.26) > TCS (10.39) > IBF (7.34) > TPT (3.09) > VPL (1.16). Bivariate and multivariate statistical analyses have revealed a positive correlation expressed by the majority of the PhACs with PCPs (COD, TOC), nutrients (TN, TP), and HMs (Pb, Mn, Ni) in the range from 0.540** to 0.961**(p < 0.01). Whereas, DO revealed negative correlation with most of the parameters in the range from -0.559** to -0.831** (p < 0.01). A high average concentration of PhACs was recorded in the upstream (52.08 ng/L) and wastewater discharge points (55.60 ng/L). Further, the environmental risk assessment study has identified the higher risk exhibited by TCS (RQ: 3.29) and CAF (RQ: 38.82) on algae and Daphnia respectively. The study portrays the distribution of emerging contaminants in the River Cauvery and its tributaries and also delivers preliminary data about the distribution of isoprenaline, topiramate, verapamil, and perindopril in the Indian freshwater system.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Humans , Rivers , Wastewater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...