Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 29(37): 5815-5849, 2022.
Article in English | MEDLINE | ID: mdl-34961455

ABSTRACT

Current advances in constructing functional nanomaterials and elegantly designed nanostructures have opened up new possibilities for the fabrication of viable field biosensors. Two-dimensional materials (2DMs) have fascinated much attention due to their chemical, optical, physicochemical, and electronic properties. They are ultrathin nanomaterials with unique properties such as high surface-to-volume ratio, surface charge, shape, high anisotropy, and adjustable chemical functionality. 2DMs such as graphene-based 2D materials, Silicate clays, layered double hydroxides (LDHs), MXenes, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) offer intensified physicochemical and biological functionality and have proven to be very promising candidates for biological applications and technologies. 2DMs have a multivalent structure that can easily bind to single-stranded DNA/RNA (aptamers) through covalent, non-covalent, hydrogen bond, and π-stacking interactions, whereas aptamers have a small size, excellent chemical stability, and low immunogenicity with high affinity and specificity. This review discussed the potential of various 2D material-based aptasensor for diagnostic applications, e.g., protein detection, environmental monitoring, pathogens detection, etc.


Subject(s)
Biosensing Techniques , Graphite , Nanostructures , Biosensing Techniques/methods , Clay , DNA, Single-Stranded , Graphite/chemistry , Humans , Nanostructures/chemistry , Oligonucleotides , Oxides/chemistry , RNA , Silicates
2.
Nanomedicine (Lond) ; 1(2): 177-88, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17716107

ABSTRACT

Allograft bone, dematerialized bone matrix and calcium-based synthetic materials have long been used as bone graft substitutes. First-generation bone graft substitutes as stand-alone graft substitutes have not developed as hoped. It remains a great challenge to design an ideal bone graft that emulates nature's own structures or functions. To further improve the performance of such bone graft substitutes, scientists are investigating biomimetic processes to incorporate the desirable nano-features into the next generation of biomaterials. In this regard, nanostructured biomaterials less than 100 nm in at least one dimension, in particular nanocomposites, are perceived to be beneficial and potentially ideal for bone applications, owing to their nanoscale functional characteristics that facilitate bone cell growth and subsequent tissue formation. In fact, bone itself is a nanocomposite system with a complex hierarchical structure. This review reports the impact of biomimetically derived nanocomposite biomaterials for use in bone applications and provides possible suggestions for future research and development.


Subject(s)
Bone Transplantation/methods , Nanocomposites , Animals , Biomimetic Materials/therapeutic use , Humans , Nanoparticles , Nanotechnology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...