Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 125(16): 3432-3443, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33871255

ABSTRACT

UV photons and low-energy electrons play an important role in the evolution of various molecules in the interstellar medium (ISM). Here, we examined the product molecule formation as a result of irradiation of 193 nm photons and 6.4 eV electrons (same energy under identical laboratory conditions) on D2O|CH4 + ND3|D2O sandwiched films deposited on Ru(0001) substrate at 25 K in ultrahigh vacuum as a model for processes in the ISM. Temperature-programmed desorption spectra performed following the irradiation revealed the signature of hydrazine and formamide product molecules. These molecules were, however, formed exclusively following the photons' irradiation. These results were compared with the products obtained from a D2O|CH4|D2O sample without ammonia, where deuterated formaldehyde was the dominant product, formed also by photons only. Our results indicate that the photon-induced activation of the cofrozen molecules within D2O occurs via direct (partial) dissociation of the host and embedded molecules, followed by sample annealing. The electron-induced activation occurs through a direct dissociative electron attachment mechanism. The results presented here suggest possible pathways to generate various C-N, C-O, C-C, N-O, and N-H bonds containing molecules in the ISM.

2.
J Chem Phys ; 153(12): 124707, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33003751

ABSTRACT

Ammonia molecules have an important role in the radiation-induced chemistry that occurs on grains in the cold interstellar medium and leads to the formation of nitrogen containing molecules. Such grains and surfaces are primarily covered by water ices; however, these conditions allow the growth of solid ammonia films as well. Yet, solid ammonia know-how lags the vast volume of research that has been invested in the case of films of its "sibling" molecule water, which, in the porous amorphous phase, spontaneously form polar films and can cage coadsorbed molecules within their hydrogen-bonded matrix. Here, we report on the effect of growth temperature on the spontaneous polarization of solid ammonia films (leading to internal electric fields of ∼105 V/m) within the range of 30 K-85 K on top of a Ru(0001) substrate under ultra-high vacuum conditions. The effect of growth temperature on the films' depolarization upon annealing was recorded as well. By demonstrating the ability of ammonia to cage coadsorbed molecules, as water does, we show that temperature-programmed contact potential difference measurements performed by a Kelvin probe and especially their temperature derivative can track film reorganization/reconstruction and crystallization at temperatures significantly lower than the film desorption.

3.
J Chem Phys ; 153(14): 144702, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33086797

ABSTRACT

Monitoring thermal processes occurring in molecular films on surfaces can provide insights into physical events such as morphology changes and phase transitions. Here, we demonstrate that temperature-programmed contact potential difference (TP-∆CPD) measurements employed by a Kelvin probe under ultrahigh vacuum conditions and their temperature derivative can track films' restructure and crystallization occurring in amorphous solid water (ASW) at temperatures well below the onset of film desorption. The effects of growth temperature and films' thickness on the spontaneous polarization that develops within ASW films grown at 33 K-120 K on top of a Ru(0001) substrate are reported. Electric fields of ∼106 V/m are developed within the ASW films despite low average levels of molecular dipole alignment (<0.01%) normal to the substrate plane. Upon annealing, an irreversible morphology-dependent depolarization has been recorded, indicating that the ASW films keep a "memory" of their thermal history. We demonstrate that TP-∆CPD measurements can track the collapse of the porous structure at temperatures above the growth and the ASW-ice Ic and ASW-ice Ih transitions at 131 K and 157 K, respectively. These observations have interesting implications for physical and chemical processes that take place at the interstellar medium such as planetary formation and photon- and electron-induced synthesis of new molecules.

4.
Phys Chem Chem Phys ; 20(24): 16847-16852, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29892728

ABSTRACT

Inorganic and organic lead halide perovskite materials attract great interest in the scientific community because of their potential for low-cost, high efficiency solar cells. In this report we add a new property of these materials, namely their photochemical activity in the visible light range. Both inorganic (CsPbBr3) and organic (CH3NH3PbBr3-MAPbBr3) perovskite thin films were demonstrated to promote photo-dissociation of adsorbed ethyl chloride (EC), employing 532 nm pulsed laser irradiation under ultra-high vacuum (UHV) conditions. From the post-irradiation temperature programmed desorption (TPD) analysis, the yield of photoproduct formation was found to be up to two orders of magnitude higher than for UV light-excited EC molecules on metallic and oxide surfaces. Photo-reactivity on top of the CsPbBr3 surface is almost an order of magnitude more efficient than on the CH3NH3PbBr3 surface, apparently due to the lower density of defect and surface states. A direct correlation was found between electron-induced luminescence and photoluminescence intensities and the photoreactivity cross-sections. We conclude that both the intense luminescence and the well-known photovoltaic properties associated with these halide perovskite materials are consistent with the efficiency of photo-reactivity in the visible range, reported here for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...