Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 249(2): 158-65, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20851137

ABSTRACT

Nanoparticulate drug delivery systems offer great promise in addressing challenges of drug toxicity, poor bioavailability and non-specificity for a number of drugs. Much progress has been reported for nano drug delivery systems for intravenous administration, however very little is known about the effects of orally administered nanoparticles. Furthermore, the development of nanoparticulate systems necessitates a thorough understanding of the biological response post exposure. This study aimed to elucidate the in vivo uptake of chitosan and polyethylene glycol (PEG) coated Poly, DL, lactic-co-glycolic Acid (PLGA) nanoparticles and the immunological response within 24 h of oral and peritoneal administration. These PLGA nanoparticles were administered orally and peritoneally to female Balb/C mice, they were taken up by macrophages of the peritoneum. When these particles were fluorescently labelled, intracellular localisation was observed. The expression of pro-inflammatory cytokines IL-2, IL-6, IL-12p70 and TNF-α in plasma and peritoneal lavage was found to remain at low concentration in PLGA nanoparticles treated mice as well as ZnO nanoparticles during the 24 hour period. However, these were significantly increased in lipopolysaccharide (LPS) treated mice. Of these pro-inflammatory cytokines, IL-6 and IL-12p70 were produced at the highest concentration in the positive control group. The anti-inflammatory cytokines IL-10 and chemokines INF-γ, IL-4, IL-5 remained at normal levels in PLGA treated mice. IL-10 and INF-γ were significantly increased in LPS treated mice. MCP-1 was found to be significantly produced in all groups in the first hours, except the saline treated mice. These results provide the first report to detail the induction of cytokine production by PLGA nanoparticles engineered for oral applications.


Subject(s)
Chitosan/toxicity , Lactic Acid , Polyethylene Glycols , Polyglycolic Acid , Administration, Oral , Animals , Chitosan/administration & dosage , Chitosan/immunology , Cytokines/biosynthesis , Drug Delivery Systems , Female , Lactic Acid/immunology , Lactic Acid/toxicity , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Nanoparticles , Particle Size , Polyethylene Glycols/toxicity , Polyglycolic Acid/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer
SELECTION OF CITATIONS
SEARCH DETAIL
...