Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(15): 4560-4573, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37432764

ABSTRACT

The skew and shape of the molecular weight distribution (MWD) of polymers have a significant impact on polymer physical properties. Standard summary metrics statistically derived from the MWD only provide an incomplete picture of the polymer MWD. Machine learning (ML) methods coupled with high-throughput experimentation (HTE) could potentially allow for the prediction of the entire polymer MWD without information loss. In our work, we demonstrate a computer-controlled HTE platform that is able to run up to 8 unique variable conditions in parallel for the free radical polymerization of styrene. The segmented-flow HTE system was equipped with an inline Raman spectrometer and offline size exclusion chromatography (SEC) to obtain time-dependent conversion and MWD, respectively. Using ML forward models, we first predict monomer conversion, intrinsically learning varying polymerization kinetics that change for each experimental condition. In addition, we predict entire MWDs including the skew and shape as well as SHAP analysis to interpret the dependence on reagent concentrations and reaction time. We then used a transfer learning approach to use the data from our high-throughput flow reactor to predict batch polymerization MWDs with only three additional data points. Overall, we demonstrate that the combination of HTE and ML provides a high level of predictive accuracy in determining polymerization outcomes. Transfer learning can allow exploration outside existing parameter spaces efficiently, providing polymer chemists with the ability to target the synthesis of polymers with desired properties.


Subject(s)
Polymers , Molecular Weight , Polymerization , Polymers/chemistry
2.
RSC Adv ; 10(29): 17171-17179, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-35521475

ABSTRACT

The unique characteristics of water-based hydroxyethyl sulfone (HES)-vinyl sulfone (VS) dynamic equilibrium are exploited in the design of new reactive coalescing agents (RCAs) for the first time to address VOC (Volatile Organic Compound) emission issues from waterborne coatings. New RCAs were synthesized as HES analogues of widely used commercial coalescing agents (CAs) and characterized. These HES based RCAs are found to be effective towards film formation as evidenced by minimum film formation temperature (MFFT) studies. Equilibration of HES to VS of these RCAs was established and the VS intermediate was isolated and characterized. Detailed studies reveal that HES analogues of RCAs react with amine/hydroxyl containing monomers and latex only during the film formation through VS formation, while HES remains unreactive during storage in water or aqueous basic solution. The current study demonstrates the potential use of HES compounds as RCAs towards environmentally benign waterborne coatings. The reactivity of HES analogues towards latex polymer is found to be promoted during the film formation without use of any other external triggers like heat or light.

3.
Chem Asian J ; 13(3): 284-291, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29214741

ABSTRACT

The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (Mn ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m-1 cm-1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone.


Subject(s)
Biocatalysis , Laccase/metabolism , Lignin/biosynthesis , Lignin/chemistry , Ultraviolet Rays , Laccase/chemistry , Molecular Weight
4.
Biotechnol Biofuels ; 10: 32, 2017.
Article in English | MEDLINE | ID: mdl-28174601

ABSTRACT

BACKGROUND: Lignin is a potential biorefinery feedstock for the production of value-added chemicals including vanillin. A huge amount of lignin is produced as a by-product of the paper industry, while cellulosic components of plant biomass are utilized for the production of paper pulp. In spite of vast potential, lignin remains the least exploited component of plant biomass due to its extremely complex and heterogenous structure. Several enzymes have been reported to have lignin-degrading properties and could be potentially used in lignin biorefining if their catalytic properties could be improved by enzyme engineering. The much needed improvement of lignin-degrading enzymes by high-throughput selection techniques such as directed evolution is currently limited, as robust methods for detecting the conversion of lignin to desired small molecules are not available. RESULTS: We identified a vanillin-inducible promoter by RNAseq analysis of Escherichia coli cells treated with a sublethal dose of vanillin and developed a genetically programmed vanillin-sensing cell by placing the 'very green fluorescent protein' gene under the control of this promoter. Fluorescence of the biosensing cell is enhanced significantly when grown in the presence of vanillin and is readily visualized by fluorescence microscopy. The use of fluorescence-activated cell sorting analysis further enhances the sensitivity, enabling dose-dependent detection of as low as 200 µM vanillin. The biosensor is highly specific to vanillin and no major response is elicited by the presence of lignin, lignin model compound, DMSO, vanillin analogues or non-specific toxic chemicals. CONCLUSIONS: We developed an engineered E. coli cell that can detect vanillin at a concentration as low as 200 µM. The vanillin-sensing cell did not show cross-reactivity towards lignin or major lignin degradation products including vanillin analogues. This engineered E. coli cell could potentially be used as a host cell for screening lignin-degrading enzymes that can convert lignin to vanillin.

5.
Chemistry ; 18(18): 5693-700, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22438070

ABSTRACT

A robust heterogeneous self-supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine-cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self-supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium-alkoxide complex. The isolated SCTC catalysts were remarkably stable and showed up to 98 % enantioselectivity (ee) with complete conversion of the imine within 2 h for a wide variety of imines at room temperature. The heterogeneous catalysts were recyclable more than 10 times without any loss in activity or selectivity. The robustness, high performance, and recyclability of the catalyst enabled it to be used in a packed-bed reactor to carry out the cyanation under continuous flow. Up to 97 % ee and quantitative conversion with a throughput of 45 mg h(-1) were achieved under optimized flow conditions at room temperature in the case of benzhydryl imine. Furthermore, a three-component Strecker reaction was performed under continuous flow by using the corresponding aldehydes and amines instead of the preformed imines. A good product distribution was obtained for the formation of amino nitriles with ee values of up to 98 %. Synthetically useful ee values were also obtained for challenging α-branched aliphatic aldehyde by using the three-component continuous Strecker reaction.


Subject(s)
Imines/chemistry , Titanium/chemistry , Amino Alcohols/chemistry , Benzhydryl Compounds/chemistry , Catalysis , Nitriles/chemistry , Temperature
7.
Org Lett ; 12(2): 264-7, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20025268

ABSTRACT

A highly active and enantioselective titanium-catalyzed cyanation of imines at room temperature is described. The catalyst used is a partially hydrolyzed titanium alkoxide (PHTA) precatalyst together with a readily available N-salicyl-beta-aminoalcohol ligand. Up to 98% ee was obtained with quantitative yields in 15 min of reaction time using 5 mol % of the catalyst. Various N-protecting groups such as benzyl, benzhydryl, Boc, and PMP are tolerated.


Subject(s)
Imines/chemistry , Nitriles/chemical synthesis , Organometallic Compounds/chemistry , Temperature , Titanium/chemistry , Catalysis , Molecular Structure , Nitriles/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...