Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Med ; 9(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331451

ABSTRACT

We collated publicly available single-cell expression profiles of circulating tumor cells (CTCs) and showed that CTCs across cancers lie on a near-perfect continuum of epithelial to mesenchymal (EMT) transition. Integrative analysis of CTC transcriptomes also highlighted the inverse gene expression pattern between PD-L1 and MHC, which is implicated in cancer immunotherapy. We used the CTCs expression profiles in tandem with publicly available peripheral blood mononuclear cell (PBMC) transcriptomes to train a classifier that accurately recognizes CTCs of diverse phenotype. Further, we used this classifier to validate circulating breast tumor cells captured using a newly developed microfluidic system for label-free enrichment of CTCs.

3.
Biomed Microdevices ; 18(4): 68, 2016 08.
Article in English | MEDLINE | ID: mdl-27432321

ABSTRACT

Capillary-driven microfluidics is essential for development of point-of-care diagnostic micro-devices. Polymerase chain reaction (PCR)-based micro-devices are widely developed and used in such point-of-care settings. It is imperative to characterize the fluid parameters of PCR solution for designing efficient capillary-driven microfluidic networks. Generally, for numeric modelling, the fluid parameters of PCR solution are approximated to that of water. This procedure leads to inaccurate results, which are discrepant to experimental data. This paper describes mathematical modeling and experimental validation of capillary-driven flow inside Poly-(dimethyl) siloxane (PDMS)-glass hybrid micro-channels. Using experimentally measured PCR fluid parameters, the capillary meniscus displacement in PDMS-glass microfluidic ladder network is simulated using computational fluid dynamic (CFD), and experimentally verified to match with the simulated data.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Polymerase Chain Reaction , Dimethylpolysiloxanes/chemistry , Glass/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Theoretical , Nylons/chemistry , Octoxynol/chemistry , Point-of-Care Systems , Solutions , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...