Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 39(7): 110812, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35568025

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , Epitopes , Humans
2.
bioRxiv ; 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-33972947

ABSTRACT

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In Brief: LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. Highlights: LY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variantsNo loss of potency against currently circulating variantsBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID databaseBreadth of neutralizing activity and potency supports clinical development.

3.
Arch Otolaryngol Head Neck Surg ; 132(3): 317-26, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16549753

ABSTRACT

OBJECTIVES: To determine expression of cell cycle and apoptotic genes, biochemical analysis of CCL23 and antisense cyclin D1-transfected CCL23 (CCL23AS) cells in the presence of cisplatin was performed. In addition, biochemical analysis of CAL27 cells before and after treatment with cisplatin was performed to determine expression of cell cycle genes. DESIGN: CCL23, CCL23AS, and CAL27 cell lines were treated with cisplatin. Western blot analysis, fluorescence-activated cell sorting, and apoptosis assays were performed. SETTING: In vitro study of head and neck cancer cell lines CCL23, CCL23AS, and CAL27. INTERVENTION: CCL23, CCL23AS, and CAL27 cells were treated with cisplatin. MAIN OUTCOME MEASURES: Expression of p16, p21, p53, Bcl-xL, Bcl-xS, p27, DP1, MDM2, Bcl-2, c-Jun, and Jun-D were assessed using Western blot analysis. RESULTS: There was increased expression of p16, p21, p53, BCLxL, and BCLxS genes with cisplatin treatment in the CCL23 and CCL23AS cells. Expression of p27, DP1, MDM2, BCL2, c-iun, and jun-D remained unaltered after treatment. There was decreased phosphorylation of Rb protein with complete absence of hyperphosphorylated Rb in the maximally sensitized antisense cyclin D1-transfected (CCL23AS) cells. Fluorescence-activated cell sorter analysis revealed a decreased G2 phase of the cell cycle and an increased proportion of apoptotic cells in the CCL23AS cell line compared with parental CCL23 cells. Cell killing also occurred in the presence of caspase-3 inhibitor. While CCL23 cells contain wild-type p53, the CAL27 cells have a point mutation in codon 193 (A-->T transversion) of exon 6. However, CAL27 cells still exhibited increased expression of p21 after treatment with cisplatin. CONCLUSIONS: These results, in combination with increased expression of the p53 downstream effecter p21, indicate that the cisplatin-induced cell cycle arrest operates through the p16/p53-dependent pathway, and a caspase-independent pathway may be involved. Combination treatment of head and neck squamous cell carcinoma via cell cycle inhibition and cisplatin holds promise as a potential therapy in the clinical setting.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/pathology , Cisplatin/pharmacology , Cyclin-Dependent Kinase Inhibitor p16/analysis , Head and Neck Neoplasms/pathology , Tumor Suppressor Protein p53/analysis , Apoptosis/drug effects , Caspase 3 , Caspases/analysis , Cell Death , Flow Cytometry , Proliferating Cell Nuclear Antigen/analysis , Proto-Oncogene Proteins c-jun/analysis , Proto-Oncogene Proteins c-mdm2/analysis , Retinoblastoma Protein/metabolism , Tumor Cells, Cultured , bcl-X Protein/analysis
4.
Clin Cancer Res ; 11(19 Pt 1): 6994-7002, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16203793

ABSTRACT

PURPOSE: The purpose of this study was to determine whether curcumin would trigger cell death in the head and neck squamous cell carcinoma (HNSCC) cell lines CCL 23, CAL 27, and UM-SCC1 in a dose-dependent fashion. EXPERIMENTAL DESIGN: HNSCC cells were treated with curcumin and assayed for in vitro growth suppression using 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide and fluorescence-activated cell sorting analyses. Expression of p16, cyclin D1, phospho-Ikappabeta, and nuclear factor-kappabeta (NF-kappabeta) were measured by Western blotting, gel shift, and immunofluorescence. RESULTS: Addition of curcumin resulted in a dose-dependent growth inhibition of all three cell lines. Curcumin treatment resulted in reduced nuclear expression of NF-kappabeta. This effect on NF-kappabeta was further reflected in the decreased expression of phospho-Ikappabeta-alpha. Whereas the expression of cyclin D1, an NF-kappabeta-activated protein, was also reduced, there was no difference in the expression of p16 at the initial times after curcumin treatment. In vivo growth studies were done using nude mice xenograft tumors. Curcumin was applied as a noninvasive topical paste to the tumors and inhibition of tumor growth was observed in xenografts from the CAL27 cell line. CONCLUSIONS: Curcumin treatment resulted in suppression of HNSCC growth both in vitro and in vivo. Our data support further investigation into the potential use for curcumin as an adjuvant or chemopreventive agent in head and neck cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Curcumin/pharmacology , Head and Neck Neoplasms/drug therapy , Animals , Annexin A5/chemistry , Antineoplastic Agents/administration & dosage , Blotting, Western , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Separation , Cell Survival , Curcumin/administration & dosage , Cyclin D1/biosynthesis , Dose-Response Relationship, Drug , Female , Flow Cytometry , Humans , I-kappa B Proteins/metabolism , In Vitro Techniques , Mice , Mice, Nude , Microscopy, Fluorescence , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Neoplasm Transplantation , Phosphorylation , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...