Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Heart Fail ; 8(5): 914-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26179185

ABSTRACT

BACKGROUND: Skeletal muscle strength, velocity, and power are markedly reduced in patients with heart failure, which contributes to their impaired exercise capacity and lower quality of life. This muscle dysfunction may be partially because of decreased nitric oxide (NO) bioavailability. We therefore sought to determine whether ingestion of inorganic nitrate (NO3 (-)) would increase NO production and improve muscle function in patients with heart failure because of systolic dysfunction. METHODS AND RESULTS: Using a double-blind, placebo-controlled, randomized crossover design, we determined the effects of dietary NO3 (-) in 9 patients with heart failure. After fasting overnight, subjects drank beetroot juice containing or devoid of 11.2 mmol of NO3 (-). Two hours later, muscle function was assessed using isokinetic dynamometry. Dietary NO3 (-) increased (P<0.05-0.001) breath NO by 35% to 50%. This was accompanied by 9% (P=0.07) and 11% (P<0.05) increases in peak knee extensor power at the 2 highest movement velocities tested (ie, 4.71 and 6.28 rad/s). Maximal power (calculated by fitting peak power data with a parabola) was therefore greater (ie, 4.74±0.41 versus 4.20±0.33 W/kg; P<0.05) after dietary NO3 (-) intake. Calculated maximal velocity of knee extension was also higher after NO3 (-) ingestion (ie, 12.48±0.95 versus 11.11±0.53 rad/s; P<0.05). Blood pressure was unchanged, and no adverse clinical events occurred. CONCLUSIONS: In this pilot study, acute dietary NO3 (-) intake was well tolerated and enhanced NO bioavailability and muscle power in patients with systolic heart failure. Larger-scale studies should be conducted to determine whether the latter translates into an improved quality of life in this population. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01682356.


Subject(s)
Dietary Supplements , Exercise/physiology , Heart Failure/diet therapy , Muscle Contraction/drug effects , Muscle, Skeletal/physiopathology , Nitrates/administration & dosage , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Female , Heart Failure/physiopathology , Humans , Male , Middle Aged , Muscle, Skeletal/drug effects , Oxygen Consumption , Pilot Projects , Quality of Life
2.
Nitric Oxide ; 48: 16-21, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25199856

ABSTRACT

Nitric oxide (NO) has been demonstrated to enhance the maximal shortening velocity and maximal power of rodent muscle. Dietary nitrate (NO3(-)) intake has been demonstrated to increase NO bioavailability in humans. We therefore hypothesized that acute dietary NO3(-) intake (in the form of a concentrated beetroot juice (BRJ) supplement) would improve muscle speed and power in humans. To test this hypothesis, healthy men and women (n = 12; age = 22-50 y) were studied using a randomized, double-blind, placebo-controlled crossover design. After an overnight fast, subjects ingested 140 mL of BRJ either containing or devoid of 11.2 mmol of NO3(-). After 2 h, knee extensor contractile function was assessed using a Biodex 4 isokinetic dynamometer. Breath NO levels were also measured periodically using a Niox Mino analyzer as a biomarker of whole-body NO production. No significant changes in breath NO were observed in the placebo trial, whereas breath NO rose by 61% (P < 0.001; effect size = 1.19) after dietary NO3(-) intake. This was accompanied by a 4% (P < 0.01; effect size = 0.74) increase in peak knee extensor power at the highest angular velocity tested (i.e., 6.28 rad/s). Calculated maximal knee extensor power was therefore greater (i.e., 7.90 ± 0.59 vs. 7.44 ± 0.53 W/kg; P < 0.05; effect size = 0.63) after dietary NO3(-) intake, as was the calculated maximal velocity (i.e., 14.5 ± 0.9 vs. 13.1 ± 0.8 rad/s; P < 0.05; effect size = 0.67). No differences in muscle function were observed during 50 consecutive knee extensions performed at 3.14 rad/s. We conclude that acute dietary NO3(-) intake increases whole-body NO production and muscle speed and power in healthy men and women.


Subject(s)
Knee Joint/physiology , Muscle, Skeletal/physiology , Nitrates/pharmacology , Adult , Biological Availability , Dietary Supplements , Female , Humans , Knee Joint/drug effects , Male , Middle Aged , Muscle Contraction/drug effects , Muscle Fatigue/physiology , Muscle Strength/physiology , Nitrates/administration & dosage , Nitric Oxide/pharmacokinetics , Torque , Young Adult
3.
Circ Heart Fail ; 1(4): 249-57, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19808299

ABSTRACT

BACKGROUND: Cardiac amyloidosis is characterized by amyloid infiltration resulting in extracellular matrix disruption. Amyloid cardiomyopathy due to immunoglobulin light chain protein (AL-CMP) deposition has an accelerated clinical course and a worse prognosis compared with non-light chain cardiac amyloidoses (ie, forms associated with wild-type or mutated transthyretin [TTR]). We therefore tested the hypothesis that determinants of proteolytic activity of the extracellular matrix, the matrix metalloproteinases (MMPs), and their tissue inhibitors (TIMPs) would have distinct patterns and contribute to the pathogenesis of AL-CMP versus TTR-related amyloidosis. METHODS AND RESULTS: We studied 40 patients with systemic amyloidosis: 10 AL-CMP patients, 20 patients with TTR-associated forms of cardiac amyloidosis, ie, senile systemic amyloidosis (involving wild-type TTR) or mutant TTR, and 10 patients with AL amyloidosis without cardiac involvement. Serum MMP-2 and -9, TIMP-1, -2, and -4, brain natriuretic peptide values, and echocardiography were determined. AL-CMP and TTR-related amyloidosis groups had similar degrees of increased left ventricular wall thickness. However, brain natriuretic peptide, MMP-9, and TIMP-1 levels were distinctly elevated accompanied by marked diastolic dysfunction in the AL-CMP group versus no or minimal increases in the TTR-related amyloidosis group. Brain natriuretic peptide, MMPs, and TIMPs were not correlated with the degree of left ventricular wall thickness but were correlated to each other and to measures of diastolic dysfunction. Immunostaining of human endomyocardial biopsies showed diffuse expression of MMP-9 and TIMP-1 in AL-CMP and limited expression in TTR-related amyloidosis hearts. CONCLUSIONS: Despite comparable left ventricular wall thickness with TTR-related cardiac amyloidosis, AL-CMP patients have higher brain natriuretic peptide, MMPs, and TIMPs, which correlated with diastolic dysfunction. These findings suggest a relationship between light chains and extracellular matrix proteolytic activation that may play an important role in the functional and clinical manifestations of AL-CMP, distinct from the other non-light chain cardiac amyloidoses.


Subject(s)
Amyloid/metabolism , Amyloidosis/blood , Amyloidosis/classification , Cardiomyopathies/blood , Immunoglobulin Light Chains/metabolism , Matrix Metalloproteinases/blood , Prealbumin/metabolism , Tissue Inhibitor of Metalloproteinases/blood , Aged , Amyloid/chemistry , Amyloidosis/complications , Amyloidosis/diagnosis , Amyloidosis/physiopathology , Biomarkers/blood , Cardiomyopathies/complications , Cardiomyopathies/diagnosis , Cardiomyopathies/physiopathology , Echocardiography , Extracellular Matrix , Female , Heart Ventricles/diagnostic imaging , Humans , Kidney Diseases/etiology , Male , Matrix Metalloproteinase 9/blood , Mutation , Myocardium/metabolism , Myocardium/pathology , Natriuretic Peptide, Brain/blood , Peptide Hydrolases/blood , Prealbumin/genetics , Tissue Inhibitor of Metalloproteinase-1/blood , Ventricular Function, Left , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...