Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 10(5): 2241-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24434535

ABSTRACT

There is a great need for novel materials for mineralized tissue repair and regeneration. Two examples of such tissue, bone and dentin, are highly organized hierarchical nanocomposites in which mineral and organic phases interface at the molecular level. In contrast, current graft materials are either ceramic powders or physical blends of mineral and organic phases with mechanical properties far inferior to those of their target tissues. The objective of this study was to synthesize composite nanofibrils with highly integrated organic/inorganic phases inspired by the mineralized collagen fibrils of bone and dentin. Utilizing our understanding of bone and dentin biomineralization, we have first designed bioinspired peptides containing 3 Ser-Ser-Asp repeat motifs based on the highly phosphorylated protein, dentin phosphophoryn (DPP), found in dentin and alveolar bone. We demonstrate that up to 80% of serines in the peptide can be phosphorylated by casein kinases. We further tested the ability of these peptides to induce biomimetic calcium phosphate mineralization of collagen fibrils. Our mineralization studies have revealed that in the presence of these phosphorylated peptides, mineralized collagen fibrils structurally similar to the mineralized collagen fibrils of bone and dentin were formed. Our results demonstrate that using phosphorylated DPP-inspired peptides, we can successfully synthesize biomimetic composite nanofibrils with integrated organic and inorganic phases. These results provide the first step in the development of biomimetic nanostructured materials for mineralized tissue repair and regeneration using phosphopeptides.


Subject(s)
Bone and Bones/metabolism , Nanocomposites/chemistry , Peptides/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Calcification, Physiologic , Casein Kinases/metabolism , Electrons , Fibrillar Collagens/metabolism , Kinetics , Mass Spectrometry , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/chemistry , Phosphorylation , Rats , Tomography
2.
Mater Sci Eng C Mater Biol Appl ; 30(8): 1157-1161, 2010 Oct 12.
Article in English | MEDLINE | ID: mdl-21461313

ABSTRACT

Inhibiting the non-specific adhesion of cells and proteins to biomaterials such as stents, catheters and guide wires is an important interfacial issue that needs to be addressed in order to reduce surface-related implant complications. Medical grade stainless steel 316L was used as a model system to address this issue. To alter the interfacial property of the implant, self assembled monolayers of long chain phosphonic acids with -CH(3), -COOH, -OH tail groups were formed on the native oxide surface of medical grade stainless steel 316L. The effect of varying the tail groups on 3T3 fibroblast adhesion was investigated. The methyl terminated phosphonic acid significantly prevented cell adhesion however presentation of hydrophilic tail groups at the interface did not significantly reduce cell adhesion when compared to the control stainless steel 316L.

3.
Langmuir ; 26(3): 1747-54, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20039608

ABSTRACT

Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides, namely nickel, chromium, molybdenum, manganese, iron, and titanium, were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid, and octadecylsulfonic acid on these substrates were examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy, and matrix-assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation.


Subject(s)
Alloys/chemistry , Organic Chemicals/chemistry , Oxides/chemistry , Hydrogen Bonding , Microscopy, Atomic Force , Sonication , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared , Surface Properties
4.
Langmuir ; 23(5): 2284-8, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17266343

ABSTRACT

Stainless steel 316L is a widely used biomaterial substrate whose biocompatibility could be improved by surface modification. As a first step in this process, self-assembled monolayers of octanoic acid, octadecylcarboxylic acid, 16-hydroxyhexadecanoic acid, 12-aminododecanoic acid, and 1,12-dodecane dicarboxylic acid have been formed on the native oxide surface of stainless steel 316L by a simple, one-step solution deposition method. The ordering, close-packing, and coverage of the monolayers formed were characterized by diffuse reflectance infrared spectroscopy, contact angle measurements, and atomic force microscopy. The same procedure was applicable for all long alkyl chain carboxylic acids. This process formed chemically and mechanically stable monolayers. These carboxylic acids formed a bidentate bond with the stainless steel substrate. Robust chemical attachment of the acids to stainless steel through a simple process provides a stepping stone to improving the biocompatibility of stainless steel 316L.


Subject(s)
Acids/chemistry , Biocompatible Materials/chemistry , Oxides/chemistry , Alkanes/chemistry , Caprylates/chemistry , Carboxylic Acids/chemistry , Chemistry, Physical/methods , Materials Testing , Microscopy, Atomic Force , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Surface Properties , Water/chemistry
5.
Langmuir ; 23(5): 2444-52, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17261036

ABSTRACT

Development of coatings to minimize unwanted surface adsorption is extremely important for their use in applications, such as sensors and medical implants. Self-assembled monolayers (SAMs) are an excellent choice for coatings that minimize nonspecific adsorption because they can be uniform and have a very high surface coverage. Another equally important characteristic of such coatings is their stability. In the present study, both the bonding mechanism and the stability of stearic acid SAMs on two aluminum oxides (single-crystal C-plane aluminum oxide (sapphire) and amorphous aluminum oxide (alumina)) are investigated. The adsorption mechanism is investigated by ex situ X-ray photoelectron spectroscopy and infrared (IR) spectroscopy. The results revealed that stearic acid binds to sapphire surfaces via a bidentate interaction of carboxylate with two oxygen atoms while it binds to alumina surfaces via both bidentate and monodentate interactions. Desorption kinetics of stearic acid self-organized on both aluminum oxide surfaces into water is explored by ex situ tapping mode atomic force microscopy, IR spectroscopy, and contact angle measurements. The results exhibit that the SAMs of stearic acid formed on sapphire are not stable in water and are continuously lost through desorption. Water contact angle measurements of SAMs that are immersed in water further indicate that the desorption rate of adsorbates from atomically smooth terrace sites is substantially faster than that of adsorbates from the sites of surface defects due to weaker molecular interaction with the smooth surface. A time-dependent desorption profile of SAMs grown on amorphous alumina reveals that contact angles decrease monotonically without any regional distinction, providing further evidence for the presence of adsorption sites with different types of affinity on the amorphous alumina surface.

6.
Langmuir ; 22(15): 6469-72, 2006 Jul 18.
Article in English | MEDLINE | ID: mdl-16830984

ABSTRACT

Phosphonate-steel interactions have been industrially significant for decades, but details of the phosphonate-steel interface have not yet been characterized. Self-assembled monolayers of phosphonic acids were formed on stainless steel 316L by room-temperature solution deposition. The acids are covalently bound to the surface as phosphonates in a bidentate manner, as determined by diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Complete coverage of the surface is confirmed by contact angle measurement and atomic force microscopic imaging. This method of monolayer formation contrasts the requirement for heating and long reaction times found to be necessary to form phosphonate monolayers on other metal oxide substrates, such as titanium and silicon.


Subject(s)
Membranes, Artificial , Organophosphonates/chemical synthesis , Oxides/chemistry , Stainless Steel/chemistry , Microscopy, Atomic Force , Organophosphonates/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...