Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Horiz ; 9(6): 946-955, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38456521

ABSTRACT

Molybdenum disulfide (MoS2) has emerged as a promising material for catalysis and sustainable energy conversion. However, the inertness of its basal plane to electrochemical reactions poses challenges to the utilization of wafer-scale MoS2 in electrocatalysis. To overcome this limitation, we present a technique that enhances the catalytic activity of continuous MoS2 by preferentially activating its buried grain boundaries (GBs). Through mild UV irradiation, a significant enhancement in GB activity was observed that approaches the values for MoS2 edges, as confirmed by a site-selective photo-deposition technique and micro-electrochemical hydrogen evolution reaction (HER) measurements. Combined spectroscopic characterization and ab-initio simulation demonstrates substitutional oxygen functionalization at the grain boundaries to be the origin of this selective catalytic enhancement by an order of magnitude. Our approach not only improves the density of active sites in MoS2 catalytic processes but yields a new photocatalytic conversion process. By exploiting the difference in electronic structure between activated GBs and the basal plane, homo-compositional junctions were realized that improve the photocatalytic synthesis of hydrogen by 47% and achieve performances beyond the capabilities of other catalytic sites.

2.
Nanoscale Horiz ; 9(1): 156-161, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37947058

ABSTRACT

Two-dimensional (2D) material-based nanoelectromechanical (NEM) resonators are expected to be enabling components in hybrid qubits that couple mechanical and electromagnetic degrees of freedom. However, challenges in their sensitivity and coherence time have to be overcome to realize such mechanohybrid quantum systems. We here demonstrate the potential of strain engineering to realize 2D material-based resonators with unprecedented performance. A liquid-based tension process was shown to enhance the resonance frequency and quality factor of graphene resonators six-fold. Spectroscopic and microscopic characterization reveals a surface-energy enhanced wall interaction as the origin of this effect. The response of our tensioned resonators is not limited by external loss factors and exhibits near-ideal internal losses, yielding superior resonance frequencies and quality factors to all previously reported 2D material devices. Our approach represents a powerful method of enhancing 2D NEM resonators for future quantum systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...