Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Omega ; 6(23): 14734-14747, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34151056

ABSTRACT

The grape extract is a potential natural reducing agent because of its high phenolic content. The extracts of seeds, skin, and pulp of grape were prepared by digestion, grinding, and soxhlet methods and used for reducing graphene oxide (GO). The reduced GO made using the soxhlet extract of grape seed (GRGO) was hydrothermally treated with titanium dioxide (TiO2) for the synthesis of GRGO-TiO2 nanocomposite. The X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-vis, photoluminescence, and Raman spectra studies further confirmed the formation of GRGO and the GRGO-TiO2 hybrid. Scanning electron microscope and transmission electron microscope studies showed the decoration of spherical TiO2 particles (<100 nm) on the few-layered GRGO sheets. The GRGO-TiO2 hybrid was explored as a working electrode for supercapacitors and visible light photocatalyst for water decontamination. GRGO-TiO2 showed higher specific capacitance (175 F g-1) than GRGO (150 F g-1) and TiO2 (125 F g-1) in an aqueous electrolyte. GRGO-TiO2 exhibited 83.6% capacitance retention even after 2000 cycles, indicating the good stability of the material. Further, under visible light irradiation (λ > 400 nm), GRGO-TiO2 showed ∼30% higher photo-oxidation of the bromophenol blue (BPB) dye than TiO2. Also, GRGO-TiO2 decreased the total organic carbon content of BPB from 92 to 18 ppm. Overall, the soxhlet extract of grape seed was found to be a cost-effective reducing agent for the preparation of GRGO, which is a suitable material to be used in supercapacitors and photocatalysis.

2.
ACS Omega ; 5(1): 158-169, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956762

ABSTRACT

Reduced graphene oxide (rGO) was synthesized from a simple, cost-effective, and eco-friendly method by using Capsicum annuum (CA) as reducing agent. The rGO was mixed with SnO2 to synthesize a nanocomposite. The synthesized materials were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and UV-visible spectroscopy techniques. The SnO2-C. annuum reduced graphene oxide (CRGO) nanocomposite exhibited a photodegradation efficiency of 97.4% when employed to remove methylene green (MG) dye. The synthesized nanocomposite showed improved photodegradation ability due to its high charge transfer and separation and owing to the presence of the large surface area of the CRGO network system. Degraded water was used in the plant and animal survival study, in which the dye solution treated with CRGO nanocomposite exhibited better growth compared to that of untreated MG solution. Likewise, in the ecotoxicity study, Artemia salina and zebra fish (Danio rerio) survival was found to be enhanced with CRGO nanocomposite-treated dye solution. This finding supports the effectiveness of CRGO/SnO2 nanocomposite for the treatment of MG dye-contaminated effluent samples.

3.
Dev Cell ; 51(1): 49-61.e4, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31495693

ABSTRACT

As epithelial tissues develop, groups of cells related by descent tend to associate in clonal populations rather than dispersing within the cell layer. While this is frequently assumed to be a result of differential adhesion, precise mechanisms controlling clonal cohesiveness remain unknown. Here we employ computational simulations to modulate epithelial cell size in silico and show that junctions between small cells frequently collapse, resulting in clone-cell dispersal among larger neighbors. Consistent with similar dynamics in vivo, we further demonstrate that mosaic disruption of Drosophila Tor generates small cells and results in aberrant clone dispersal in developing wing disc epithelia. We propose a geometric basis for this phenomenon, supported in part by the observation that soap-foam cells exhibit similar size-dependent junctional rearrangements. Combined, these results establish a link between cell-size pleomorphism and the control of epithelial cell packing, with potential implications for understanding tumor cell dispersal in human disease.


Subject(s)
Cell Size , Drosophila melanogaster/embryology , Epithelium/embryology , Animals , Apoptosis , Cell Adhesion , Cell Division , Cell Proliferation , Computer Simulation , Drosophila Proteins/metabolism , Epithelial Cells/cytology , Female , Foam Cells/cytology , Male , Morphogenesis , Receptor Protein-Tyrosine Kinases/metabolism , Wings, Animal/embryology
4.
ACS Omega ; 4(4): 6476-6485, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459780

ABSTRACT

Engineered nanomaterials are emerging in the field of environmental chemistry. This study involves the analysis of the structural, electronic, crystallinity, and morphological changes in graphitic carbon nitride (g-C3N4), an engineered nanomaterial, under rapid cooling conditions. X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared, Raman, band gap, and Mott-Schottky analyses strongly proved that the liquid N2-quenched sample of g-C3N4 has structural distortion. The photocatalytic efficiency of engineered g-C3N4 nanostructures was analyzed through the degradation of reactive red 120 (RR120), methylene blue (MB), rhodamine B, and bromophenol as a representative dye. The photocatalytic dye degradation efficiency was analyzed by UV-vis spectroscopy and total organic carbon (TOC) analysis. The photocatalytic efficiency of g-C3N4 under different quenching conditions included quenching at room temperature in ice and liquid N2. The degradation efficiencies are found to be 4.2, 14.7, and 82.33% for room-temperature, ice, and liquid N2 conditions, respectively. The pseudo-first-order reaction rate of N2-quenched g-C3N4 is 9 times greater than the ice-quenched g-C3N4. Further, the TOC analysis showed that 55% (MB) and 59% (RR120) of photocatalytic mineralization were achieved within a time duration of 120 min by the liquid N2-quenched g-C3N4 nanostructure. In addition, the quenched g-C3N4 electrocatalytic behavior was examined via the hydrogen (H2) evolution reaction in acidic medium. The liquid N2-quenched g-C3N4 catalyst showed a lower overpotential with high H2 evolution when compared with the other two g-C3N4-quenched samples. The results obtained provide an insight and extend the scope for the application of engineered g-C3N4 nanostructures in the degradation of organic pollutants as well as for H2 evolution.

5.
J Environ Health Sci Eng ; 17(1): 195-207, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31297209

ABSTRACT

In the present work, we report the comparative study of photocatalytic degradation of Rhodamine B (RhB) dye in aqueous solution by using ZnO-graphene nanaocomposites obtained using two different natural reducing agents namely Grape and Eichhornia crassipes. Graphene oxide (GO) was synthesized by Hummer's method followed by reduction of the graphene oxide using natural reducing agents Grape and Eichhornia crassipes. The two samples of graphene oxide (Gr-rGO and Ei-rGO) were treated with ZnO to form a rGO-ZnO nanocomposites. The dye degradation was observed by the decrease in the absorption and decolorization in the presence of visible light. The degradation efficiency was found to be dependent on the concentration of rGO-ZnO nanocomposites added to the dye solution. The Ei-rGO has a higher adsorbing capacity due to its large surface area. A degradation efficiency of 67% was achieved by ZnO alone, whereas with the rGO-ZnO nanocomposite, the photocatalytic degradation efficiency for removal of RhB dye was found to be enhanced. The degradation efficiency was 70.0% and 97.5% with Gr-rGO-ZnO and Ei-rGO-ZnO nanocomposites respectively. The enhanced photocatalytic activity of Ei-rGO-ZnO composites could be attributed to the strong interaction with the ZnO and the defect sites available in Ei-rGO. Graphical abstractGraphical abstract of the carried work.

6.
Nature ; 571(7764): E5, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31243360

ABSTRACT

Change history: In Fig. 1b and c of this Letter, the inset times in the DIC and GFP microscopy images should be in minutes ('min') instead of seconds ('s'). This has not been corrected online.

7.
J Fluoresc ; 27(4): 1505-1512, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28405932

ABSTRACT

Quinones are molecules with varied biological activities and electronic properties which are used for important applications [1, 2]. Quinone with a heteroatom substituted, namely 2-chloro-3-ethylamino-1,4-naphthoquinone (N-CAN) was synthesized and characterized by various techniques such as H1-NMR, C13-NMR, Mass spectroscopy and FT-IR spectroscopy. In this study, the solvatochromic effects on the spectral properties of 2-chloro-3-ethylamino-1,4-naphthoquinone have been investigated in different solvents taking into consideration, the solvent parameters like dielectric constant (ε) and refractive index (η) of different solvent polarities. Using Lippert-Mataga, Bakshiev's, Kawski-Chamma-Viallet and Reichardt equations, the ground state (µg) and excited state (µe) dipole moments were calculated. The angle between the excited state and ground state dipole moments were also calculated. Graphical Abstract ᅟ.

8.
Nat Cell Biol ; 17(2): 148-59, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25621953

ABSTRACT

Actomyosin-dependent mitotic rounding occurs in both cell culture and tissue, where it is involved in cell positioning and epithelial organization. How actomyosin is regulated to mediate mitotic rounding is not well understood. Here we characterize the mechanics of single mitotic cells while imaging actomyosin recruitment to the cell cortex. At mitotic onset, the assembly of a uniform DIAPH1-dependent F-actin cortex coincides with initial rounding. Thereafter, cortical enrichment of F-actin remains stable while myosin II progressively accumulates at the cortex, and the amount of myosin at the cortex correlates with intracellular pressure. Whereas F-actin provides only short-term (<10 s) resistance to mechanical deformation, myosin sustains intracellular pressure for a longer duration (>60 s). Our data suggest that progressive accumulation of myosin II to the mitotic cell cortex probably requires the Cdk1 activation of both p21-activated kinases, which inhibit myosin recruitment, and of Rho kinase, which stimulates myosin recruitment to the cortex.


Subject(s)
CDC2 Protein Kinase/metabolism , Mitosis , Myosin Type II/metabolism , Actins/metabolism , Actomyosin/metabolism , Cysteine/analogs & derivatives , Cysteine/pharmacology , Fetal Proteins/metabolism , Formins , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Microfilament Proteins/metabolism , Microscopy, Atomic Force , Mitosis/drug effects , Models, Biological , Nuclear Proteins/metabolism , Pressure , Time Factors , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism
9.
FEBS Lett ; 588(19): 3639-48, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24928443

ABSTRACT

Single-cell force spectroscopy (SCFS) is becoming a widely used method to quantify the adhesion of a living cell to a substrate, another cell or tissue. The high sensitivity of SCFS permits determining the contributions of individual cell adhesion molecules (CAMs) to the adhesion force of an entire cell. However, to prepare adherent cells for SCFS, they must first be detached from tissue-culture flasks or plates. EDTA and trypsin are often applied for this purpose. Because cellular properties can be affected by this treatment, cells need to recover before being further characterized by SCFS. Here we introduce atomic force microscopy (AFM)-based SCFS to measure the mechanical and adhesive properties of HeLa cells and mouse embryonic kidney fibroblasts while they are recovering after detachment from tissue-culture. We find that mechanical and adhesive properties of both cell lines recover quickly (<10 min) after detachment using EDTA, while trypsin-detached fibroblasts require >60 min to fully recover. Our assay introduced to characterize the recovery of mammalian cells after detachment can in future be used to estimate the recovery behavior of other adherent cell types.


Subject(s)
Mechanical Phenomena , Microscopy, Atomic Force/methods , Actomyosin/metabolism , Animals , Biomechanical Phenomena , Cell Adhesion , Cytoskeleton/metabolism , HeLa Cells , Humans , Mice , Protein Transport , Time Factors
10.
Nature ; 469(7329): 226-30, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21196934

ABSTRACT

During mitosis, adherent animal cells undergo a drastic shape change, from essentially flat to round. Mitotic cell rounding is thought to facilitate organization within the mitotic cell and be necessary for the geometric requirements of division. However, the forces that drive this shape change remain poorly understood in the presence of external impediments, such as a tissue environment. Here we use cantilevers to track cell rounding force and volume. We show that cells have an outward rounding force, which increases as cells enter mitosis. We find that this mitotic rounding force depends both on the actomyosin cytoskeleton and the cells' ability to regulate osmolarity. The rounding force itself is generated by an osmotic pressure. However, the actomyosin cortex is required to maintain this rounding force against external impediments. Instantaneous disruption of the actomyosin cortex leads to volume increase, and stimulation of actomyosin contraction leads to volume decrease. These results show that in cells, osmotic pressure is balanced by inwardly directed actomyosin cortex contraction. Thus, by locally modulating actomyosin-cortex-dependent surface tension and globally regulating osmotic pressure, cells can control their volume, shape and mechanical properties.


Subject(s)
Actomyosin/metabolism , Cell Shape/physiology , Cytoskeleton/metabolism , Mitosis , Animals , Cell Shape/drug effects , Cell Size/drug effects , Cytochalasin D/pharmacology , Cytoskeleton/drug effects , HeLa Cells , Humans , Hydrostatic Pressure , Microscopy, Atomic Force , Models, Biological , Osmolar Concentration , Osmotic Pressure , Prophase
11.
Proc Natl Acad Sci U S A ; 107(20): 9123-8, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20435912

ABSTRACT

Cleavage of viral DNA by the bacterial Type III Restriction-Modification enzymes requires the ATP-dependent long-range communication between a distant pair of DNA recognition sequences. The classical view is that Type III endonuclease activity is only activated by a pair of asymmetric sites in a specific head-to-head inverted repeat. Based on this assumption and due to the presence of helicase domains in Type III enzymes, various motor-driven DNA translocation models for communication have been suggested. Using both single-molecule and ensemble assays we demonstrate that Type III enzymes can also cleave DNA with sites in tail-to-tail repeat with high efficiency. The ability to distinguish both inverted repeat substrates from direct repeat substrates in a manner independent of DNA topology or accessory proteins can only be reconciled with an alternative sliding mode of communication.


Subject(s)
DNA, Viral/metabolism , Deoxyribonucleases, Type III Site-Specific/metabolism , Inverted Repeat Sequences , Nucleic Acid Conformation , Binding Sites/genetics , Binding Sites/physiology , Models, Molecular , Oligonucleotides , Substrate Specificity
12.
Proc Natl Acad Sci U S A ; 106(6): 1748-53, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19181848

ABSTRACT

To cleave DNA, Type III restriction enzymes must communicate the relative orientation of two asymmetric recognition sites over hundreds of base pairs. The basis of this long-distance communication, for which ATP hydrolysis by their helicase domains is required, is poorly understood. Several conflicting DNA-looping mechanisms have been proposed, driven either by active DNA translocation or passive 3D diffusion. Using single-molecule DNA stretching in combination with bulk-solution assays, we provide evidence that looping is both highly unlikely and unnecessary, and that communication is strictly confined to a 1D route. Integrating our results with previous data, a simple communication scheme is concluded based on 1D diffusion along DNA.


Subject(s)
DNA/metabolism , Deoxyribonucleases, Type III Site-Specific/metabolism , Models, Chemical , Binding Sites , DNA/chemistry , Diffusion , Hydrolysis , Nucleic Acid Conformation , Optical Tweezers , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...