Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 85(1019): 1488-98, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22844033

ABSTRACT

OBJECTIVES: To establish local diagnostic reference levels (LDRLs) at the Royal Children's Hospital (RCH) Melbourne, Parkville, Australia, for typical paediatric CT examinations and compare these with international diagnostic reference levels (DRLs) to benchmark local practice. In addition, the aim was to develop a method of analysing local scan parameters to enable identification of areas for optimisation. METHODS: A retrospective audit of patient records for paediatric CT brain, chest and abdomen/pelvis examinations was undertaken. Demographic information, examination parameters and dose indicators--volumetric CT dose index (CTDI(vol)) and dose-length product (DLP)--were collected for 220 patients. LDRLs were derived from mean survey values and the effective dose was estimated from DLP values. The normalised CTDI(vol) values, mAs values and scan length were analysed to better identify parameters that could be optimised. RESULTS: The LDRLs across all age categories were 18-45 mGy (CTDI(vol)) and 250-700 mGy cm (DLP) for brain examinations; 3-23 mGy (CTDI(vol)) and 100-800 mGy cm (DLP) for chest examinations; and 4-15 mGy (CTDI(vol)) and 150-750 mGy cm (DLP) for abdomen/pelvis examinations. Effective dose estimates were 1.0-1.6 mSv, 1.8-13.0 mSv and 2.5-10.0 mSv for brain, chest and abdomen/pelvis examinations, respectively. CONCLUSION: The RCH mean CTDI(vol) and DLP values are similar to or lower than international DRLs. Use of low-kilovoltage protocols for body imaging in younger patients reduced the dose considerably. There exists potential for optimisation in reducing body scan lengths and justifying the selection of reference mAs values. The assessment method used here proved useful for identifying specific parameters for optimisation. Advances in knowledge Assessment of individual CT parameters in addition to comparison with DRLs enables identification of specific areas for CT optimisation.


Subject(s)
Radiation Dosage , Tomography, X-Ray Computed/methods , Age Factors , Brain/diagnostic imaging , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Pelvis/diagnostic imaging , Radiography, Abdominal/methods , Radiography, Abdominal/standards , Radiography, Thoracic/methods , Radiography, Thoracic/standards , Reference Standards , Tomography, X-Ray Computed/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...