Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34249479

ABSTRACT

The design, fabrication and characterization of single metal gate layer, metal-oxide-semiconductor (MOS) quantum dot devices robust against dielectric breakdown are presented as prototypes for future diagnostic qubits. These devices were developed as a preliminary solution to a longer term goal of a qubit platform for intercomparison between materials or for in-line diagnostics, and to provide a testbed for establishing classical measurements predictive of coherence performance. For this stage, we seek a robust MOS design that is compatible with wafer and chip architectures, that has a reduced process overhead and is sufficiently capable of challenging and advancing our measurement capabilities. In this report, we present our initial batch of silicon MOS devices using a single gate layer, which have not exhibited any failures with gate voltage excursions > 10 V, but do exhibit the reduced electrostatic control expected of a single gate layer design. We observe quantum dot formation, capacitive charge sensing between channels, and reasonable effective electron temperatures that enable spin qubit studies. The costs and benefits of the trade-off between device performance and fabrication efficiency will be discussed, as well as opportunities for future improvements.

2.
J Phys Commun ; 4(3)2020.
Article in English | MEDLINE | ID: mdl-33043155

ABSTRACT

We report on the growth of isotopically enriched 28Si epitaxial films with precisely controlled enrichment levels, ranging from natural abundance ratio of 92.2% all the way to 99.99987% (0.83 × 10-6 mol mol-1 29Si). Isotopically enriched 28Si is regarded as an ideal host material for semiconducting quantum computing due to the lack of 29Si nuclear spins. However, the detailed mechanisms for quantum decoherence and the exact level of enrichment needed for quantum computing remain unknown. Here we use hyperthermal energy ion beam deposition with silane gas to deposit epitaxial 28Si. We switch the mass selective magnetic field periodically to control the 29Si concentration. We develop a model to predict the residual 29Si isotope fraction based on deposition parameters and measure the deposited film using secondary ion mass spectrometry (SIMS). The measured 29Si concentrations show excellent agreement with the prediction, deviating on average by only 10%.

3.
Rev Sci Instrum ; 90(8): 083308, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472599

ABSTRACT

An ultrahigh vacuum (UHV) compatible Penning ion source for growing pure, highly enriched 28Si epitaxial thin films is presented. Enriched 28Si is a critical material for quantum information due to the elimination of nuclear spins. In some cases, the material must be grown by low temperature molecular beam epitaxy, e.g., scanning tunneling microscopy hydrogen lithography-based devices. Traditional high-purity physical vapor methods typically deliver a very small fraction of source material onto the target substrate, making the cost for use with highly enriched source materials very high. Thus, directed beam sources provide an efficient alternative. This UHV Penning source uses all metal or ceramic parts and a removable electromagnet to allow bake-out. The source gas is a commercial (natural isotope abundance) silane gas (SiH4), an inexpensive source material. High enrichment levels up to 99.999 87% (8.32 × 10-7 mol/mol 29Si) and high chemical purity of 99.965% are shown without postprocessing. We present and discuss the discharge properties of this new source, the ion mass spectrum when coupled to our mass filter, and the secondary ion mass spectroscopy of the grown films.

4.
AIP Adv ; 9(12)2019.
Article in English | MEDLINE | ID: mdl-38680503

ABSTRACT

Across solid state quantum information, materials deficiencies limit performance through enhanced relaxation, charge defect motion or isotopic spin noise. While classical measurements of device performance provide cursory guidance, specific qualifying metrics and measurements applicable to quantum devices are needed. For quantum applications, new materials metrics, e.g., enrichment, are needed, while existing, classical metrics like mobility might be relaxed compared to conventional electronics. In this work, we examine locally grown silicon superior in enrichment, but inferior in chemical purity compared to commercial-silicon, as part of an effort to underpin the materials standards needed for quantum grade silicon and establish a standard approach for intercomparison of these materials. We use a custom, mass-selected ion beam deposition technique, which has produced isotopic enrichment levels up to 99.99998 % 28Si, to isotopically enrich 28Si, but with chemical purity > 99.97% due the MBE techniques used. From this epitaxial silicon, we fabricate top-gated Hall bar devices simultaneously on the 28Si and on the adjacent natural abundance Si substrate for intercomparison. Using standard-methods, we measure maximum mobilities of ≈(1740±2)cm2/(V⋅s) at an electron density of (2.7×1012±3×108) cm-2 and ≈(6040±3)cm2/(V⋅s) at an electron density of (1.2×1012±5×108) cm-2 at T=1.9 K for devices fabricated on 28Si and natSi, respectively. For magnetic fields B>2 T, both devices demonstrate well developed Shubnikov-de Haas (SdH) oscillations in the longitudinal magnetoresistance. This provides transport characteristics of isotopically enriched 28Si, and will serve as a benchmark for classical transport of 28Si at its current state, and low temperature, epitaxially grown Si for quantum devices more generally.

5.
Sci Rep ; 8(1): 1790, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29379057

ABSTRACT

Using photolithographically defined implant wires for electrical connections, we demonstrate measurement of a scanning tunneling microscope (STM) patterned nanoscale electronic device on Si(100). By eliminating onerous alignment and complex lithography techniques, this approach is accessible to researchers in smaller efforts who may not have access to tools like electron beam lithography. Electrical contact to the nanodevices is achieved by implanting patterned, degenerately doped wires in the substrate using photolithography and commercial low energy ion implantation. We bring several isolated, implanted wires to within the STM scanner's field of view where the STM can detect and smoothly draw contiguous patterns that directly overlap with implant lines for electrical connections. This overlapping provides a two-dimensional (2D) overlap interface with the 2D electron system, in contrast to many state-of-the-art methods that rely on contacting an exposed edge. After the STM pattern is phosphine dosed and overgrown with silicon, photolithography is then used again to align (≈ 160 µm)2 aluminum contact pads onto (≈ 200 µm)2 implanted areas at the ends of the wires. We present detailed results that optimize the spacing of neighboring wires while maintaining electrical isolation after heating to > 1200 °C, a step required for in situ Si surface preparation.

6.
Phys Rev Lett ; 116(16): 167002, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152820

ABSTRACT

Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.

SELECTION OF CITATIONS
SEARCH DETAIL
...