Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 14(9): 908-16, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23872678

ABSTRACT

Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I-related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.


Subject(s)
Antigens, CD/metabolism , Antigens/immunology , Antigens/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Antigen Presentation/genetics , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, CD/chemistry , Antigens, CD/genetics , Butyrophilins , Chromosomes, Human, Pair 6 , Humans , Mice , Mice, Transgenic , Models, Molecular , Organophosphates/chemistry , Organophosphates/metabolism , Phosphorylation , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell, gamma-delta/immunology
2.
Nat Immunol ; 13(5): 474-80, 2012 Mar 18.
Article in English | MEDLINE | ID: mdl-22426352

ABSTRACT

The development and maturation of semi-invariant natural killer T cells (iNKT cells) rely on the recognition of self antigens presented by CD1d restriction molecules in thymus. The nature of the stimulatory thymic self lipids remains elusive. We isolated lipids from thymocytes and found that ether-bonded mono-alkyl glycerophosphates and the precursors and degradation products of plasmalogens stimulated iNKT cells. Synthetic analogs showed high potency in activating thymic and peripheral iNKT cells. Mice deficient in the peroxisomal enzyme glyceronephosphate O-acyltransferase (GNPAT), essential for the synthesis of ether lipids, had significant alteration of the thymic maturation of iNKT cells and fewer iNKT cells in both thymus and peripheral organs, which confirmed the role of ether-bonded lipids as iNKT cell antigens. Thus, peroxisome-derived lipids are nonredundant self antigens required for the generation of a full iNKT cell repertoire.


Subject(s)
Lipids/immunology , Natural Killer T-Cells/immunology , Peroxisomes/immunology , Thymocytes/immunology , Thymus Gland/immunology , Animals , Antigens, CD/metabolism , Antigens, CD1d/immunology , Antigens, CD1d/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Interleukin-4/metabolism , Lectins, C-Type/metabolism , Lipids/isolation & purification , Lysophospholipids/immunology , Lysophospholipids/metabolism , Mice , Mice, Knockout , Natural Killer T-Cells/metabolism , Peroxisomes/chemistry , Phosphatidylethanolamines/immunology , Phosphatidylethanolamines/metabolism , Thymocytes/cytology , Thymocytes/metabolism , Thymus Gland/metabolism
3.
Eur J Mass Spectrom (Chichester) ; 17(3): 265-75, 2011.
Article in English | MEDLINE | ID: mdl-21828420

ABSTRACT

A set of diastereomeric α-sulfanyl-ß-amino acid derivatives, which are important building blocks for pharmaceuticals with potent biological activity, are studied by electrospray ionization tandem mass spectrometry. The collision induced dissociation (CID) spectra of [M+H](+), [M+NH(4)](+), [M+Na](+) and [M+Li](+) of the diastereomers were studied, among them the CID of [M+Na](+) and [M+Li](+) showed consistent differences in the relative abundance of characteristic ions that enabled distinction of the anti isomers from syn isomers. The decomposition pathways for the diagnostic ions were arrived at based on high-resolution mass spectrometry data, multiple mass spectrometry data, deuterium labeling experiments and the mass shift in accordance with the substituents located at different places. Loss of (R(1)-C(6)H(4)-CH=NH) and (Cat-NH-SO(2)R(2)) from [M+Cat](+), where Cat=Na and Li, and the product ions as a results of McLafferty rearrangement involving either >S=O or >C=O group were found to be diagnostic. The McLafferty rearrangement product ions involving >S=O group were more abundant in syn isomers while those involving >C=O group were more abundant in anti isomer. The selectivity observed in the decomposition of [M+Li](+) ions was found to be similar to that of [M+Na](+) ions, but in few cases the differences are marginal in the decomposition [M+Li](+) ions.


Subject(s)
Amino Acids/analysis , Amino Acids/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...