Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 3167-3174, 2020 12.
Article in English | MEDLINE | ID: mdl-33382659

ABSTRACT

Recovery of the upper extremity (UE) and hand function is considered the highest priority for people with tetraplegia, because these functions closely integrate with their activities of daily living. Spinal cord transcutaneous stimulation (scTS) has great potential to facilitate functional restoration of paralyzed limbs by neuro-modulating the excitability of the spinal network. Recently, this approach has been demonstrated effective in improving UE function in people with motor complete and incomplete cervical SCI. However, the research thus far is limited by the lack of a comprehensive assessment of functional improvement and neurological recovery throughout the intervention. The goal of this study was to investigate whether scTS can also facilitate UE functional restoration in an individual with motor and sensory complete tetraplegia. A 38-year-old male with a C5 level, ASIA Impairment Scale-A SCI (15 years post-injury, left hand dominant pre- and post-injury), received 18 sessions (60 minutes/session) of scTS combined with task-specific hand training over the course of 8 weeks. The total score of the Graded Redefined Assessment of Strength, Sensibility, and Prehension significantly improved from 72/232 to 96/232 at post-intervention, and maintained ranging from 82/232 to 86/232 during the three months follow-up without any further treatment. The bilateral handgrip force improved by 283.4% (left) and 30.7% (right), respectively at post-intervention. These strength gains were sustained at 233.5% -250% (left) and 11.5%-73.1% (right) during the follow-up evaluation visits. Neuromuscular Recovery Scale demonstrated dramatic and long-lasting improvements following the completion of the intervention. Changes of spinal motor evoked potentials from pre- to post-intervention indicated an increased level of spinal network excitability. The present data offer preliminary evidence that the novel scTS intervention combined with hand training can enhance UE functional use in people with motor and sensory complete SCI.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Activities of Daily Living , Adult , Hand Strength , Humans , Male , Quadriplegia , Recovery of Function , Spinal Cord Injuries/complications , Upper Extremity
2.
Front Hum Neurosci ; 14: 549965, 2020.
Article in English | MEDLINE | ID: mdl-33100994

ABSTRACT

The objective of this study was to evaluate the biomechanical, neural, and functional outcomes during a 10-min treadmill stepping trial before and after two independent interventions with neuromuscular electrical stimulation (ES) in an individual with spinal cord injury (SCI). In this longitudinal study, a 34-year-old male with sensory- and motor-complete SCI (C5/C6) underwent two consecutive interventions: 61 h of supine lower limb ES (ES-alone) followed by 51 h of ES combined with stand training (ST) using an overhead body-weight support (BWS) system (ST + ES). In post ES-alone (unloaded), compared to baseline, the majority (∼60%) of lower extremity muscles decreased their peak surface electromyography (sEMG) amplitude, while in post ST + ES (loaded), compared to post ES-alone, there was a restoration in muscle activation that endured the continuous 10-min stepping. Temporal α-motor neuron activity patterns were observed for the SCI participant. In post ST + ES, there were increases in spinal activity patterns during mid-stance at spinal levels L5-S2 for the right and left limbs. Moreover, in post ES-alone, trunk stability increased with excursions from the midline of the base-of-support (50%) to the left (44.2%; Baseline: 54.2%) and right (66.4%; baseline: 77.5%). The least amount of trunk excursion observed post ST + ES, from midline to left (43%; AB: 22%) and right (64%; AB: 64%). Overall, in post ES-alone, there were gains in trunk independence with a decrease in lower limb muscle activation, whereas in post ST + ES, there were gains in trunk independence and increased muscle activation in both bilateral trunk muscles as well as lower limb muscles during the treadmill stepping paradigm. The results of the study illustrate the importance of loading during the stimulation for neural and mechanical gains.

3.
Front Neurol ; 11: 578559, 2020.
Article in English | MEDLINE | ID: mdl-33408680

ABSTRACT

Surface electromyography (sEMG) is a widely used technology in rehabilitation research and provides quantifiable information on the myoelectric output of a muscle. In this perspective, we discuss the barriers which have restricted the wide-spread use of sEMG in clinical rehabilitation of individuals with spinal cord injury (SCI). One of the major obstacles is integrating the time-consuming aspects of sEMG in the already demanding schedule of physical therapists, occupational therapists, and other clinicians. From the clinicians' perspective, the lack of confidence to use sEMG technology is also apparent due to their limited exposure to the sEMG technology and possibly limited mathematical foundation through educational and professional curricula. Several technical challenges include the limited technology-transfer of ever-evolving knowledge from sEMG research into the off-the-shelf EMG systems, lack of demand from the clinicians for systems with advanced features, lack of user-friendly intuitive interfaces, and the need for a multidisciplinary approach for accurate handling and interpretation of data. We also discuss the challenges in the application and interpretation of sEMG that are specific to SCI, which are characterized by non-standardized approaches in recording and interpretation of EMGs due to the physiological and structural state of the spinal cord. Addressing the current barriers will require a collaborative, interdisciplinary, and unified approach. The most relevant steps could include enhancing user-experience for students pursuing clinical education through revised curricula through sEMG-based case studies/projects, hands-on involvement in the research, and formation of a common platform for clinicians and technicians for self-education and knowledge share.

4.
Front Robot AI ; 7: 574365, 2020.
Article in English | MEDLINE | ID: mdl-33501335

ABSTRACT

Background: Gait analysis studies during robot-assisted walking have been predominantly focused on lower limb biomechanics. During robot-assisted walking, the users' interaction with the robot and their adaptations translate into altered gait mechanics. Hence, robust and objective metrics for quantifying walking performance during robot-assisted gait are especially relevant as it relates to dynamic stability. In this study, we assessed bi-planar dynamic stability margins for healthy adults during robot-assisted walking using EksoGT™, ReWalk™, and Indego® compared to independent overground walking at slow, self-selected, and fast speeds. Further, we examined the use of forearm crutches and its influence on dynamic gait stability margins. Methods: Kinematic data were collected at 60 Hz under several walking conditions with and without the robotic exoskeleton for six healthy controls. Outcome measures included (i) whole-body center of mass (CoM) and extrapolated CoM (XCoM), (ii) base of support (BoS), (iii) margin of stability (MoS) with respect to both feet and bilateral crutches. Results: Stability outcomes during exoskeleton-assisted walking at self-selected, comfortable walking speeds were significantly (p < 0.05) different compared to overground walking at self-selected speeds. Unlike overground walking, the control mechanisms for stability using these exoskeletons were not related to walking speed. MoSs were lower during the single support phase of gait, especially in the medial-lateral direction for all devices. MoSs relative to feet were significantly (p < 0.05) lower than those relative to crutches. The spatial location of crutches during exoskeleton-assisted walking pushed the whole-body CoM, during single support, beyond the lateral boundary of the lead foot, increasing the risk for falls if crutch slippage were to occur. Conclusion: Careful consideration of crutch placement is critical to ensuring that the margins of stability are always within the limits of the BoS to control stability and decrease fall risk.

5.
J Spinal Cord Med ; 42(3): 378-386, 2019 05.
Article in English | MEDLINE | ID: mdl-29447105

ABSTRACT

OBJECTIVE: To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). DESIGN: Single-subject, longitudinal study. SETTING: Neuroplasticity laboratory. PARTICIPANT: A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). INTERVENTIONS: Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). OUTCOME MEASURES: Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. RESULTS: Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSLA/P=54.0 kg.cm, TSLM/L=14.5 kg.cm), compared to ES-alone (TSLA/P=8.5 kg.cm, TSLM/L=3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. CONCLUSION: Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.


Subject(s)
Electric Stimulation Therapy/methods , Spinal Cord Injuries/rehabilitation , Adult , Biomechanical Phenomena , Humans , Longitudinal Studies , Lower Extremity/physiopathology , Male , Muscle, Skeletal/physiopathology , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Standing Position
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2793-2796, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440981

ABSTRACT

The goal of this study was to understand the rehabilitative effects of longitudinal overground exoskeleton training $( >100$ hours) on gait mechanics, especially foot loading, for gains in walking speed in an individual with chronic motorincomplete SCI. Biomechanical measures included: normalized plantar loading forces, walking speed and bilateral weight transfer ratio during walking in the EksoGT $^{\mathrm{ TM}}$ exoskeleton. Longitudinal training with a robotic exoskeleton yielded improvements in clinical outcomes (AIS classification, ISNCSCI motor scores and 10MWT) and provided functional gains in terms of biomechanical outcomes (plantar forces, weight transfer point) to increase overall walking speed.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries , Teaching , Exoskeleton Device/standards , Gait , Humans , Spinal Cord Injuries/rehabilitation , Teaching/standards , Walking , Walking Speed
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2805-2808, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440984

ABSTRACT

The goal of this study was to establish strideparameter gait models correlated to speed on individuals with chronic SCI and able-bodied controls walking with a powered robotic exoskeleton (EksoGT $^{\mathrm{ TM}}$). Longitudinal exoskeleton training $( >100$ hours) across eight individuals with SCI resulted in a 30% increase in walking speed. A simple linear regression between step length, stride length for given speed were very tightly correlated along a line of best fit $( \mathrm {p}<$.001). The temporal parameters of stride time, stance time and double support time depicted a non-linear exponentially decaying relationship for given walking speed. The research findings indicate that although longitudinal exoskeleton training reduces the temporal parameters, increases in spatial parameters are only marginal.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries , Humans , Walking Speed
8.
Front Neurol ; 9: 630, 2018.
Article in English | MEDLINE | ID: mdl-30131756

ABSTRACT

Background: Robotic exoskeleton (RE) based gait training involves repetitive task-oriented movements and weight shifts to promote functional recovery. To effectively understand the neuromuscular alterations occurring due to hemiplegia as well as due to the utilization of RE in acute stroke, there is a need for electromyography (EMG) techniques that not only quantify the intensity of muscle activations but also quantify and compare activation timings in different gait training environments. Purpose: To examine the applicability of a novel EMG analysis technique, Burst Duration Similarity Index (BDSI) during a single session of inpatient gait training in RE and during traditional overground gait training for individuals with acute stroke. Methods: Surface EMG was collected bilaterally with and without the RE device for five participants with acute stroke during the normalized gait cycle to measure lower limb muscle activations. EMG outcomes included integrated EMG (iEMG) calculated from the root-mean-square profiles, and a novel measure, BDSI derived from activation timing comparisons. Results: EMG data demonstrated volitional although varied levels of muscle activations on the affected and unaffected limbs, during gait with and without the RE. During the stance phase mean iEMG of the soleus (p = 0.019) and rectus femoris (RF) (p = 0.017) on the affected side significantly decreased with RE, as compared to without the RE. The differences in mean BDSI scores on the affected side with RE were significantly higher than without RE for the vastus lateralis (VL) (p = 0.010) and RF (p = 0.019). Conclusions: A traditional amplitude analysis (iEMG) and a novel timing analysis (BDSI) techniques were presented to assess the neuromuscular adaptations resulting in lower extremities muscles during RE assisted hemiplegic gait post acute stroke. The RE gait training environment allowed participants with hemiplegia post acute stroke to preserve their volitional neuromuscular activations during gait iEMG and BDSI analyses showed that the neuromuscular changes occurring in the RE environment were characterized by correctly timed amplitude and temporal adaptations. As a result of these adaptations, VL and RF on the affected side closely matched the activation patterns of healthy gait. Preliminary EMG data suggests that the RE provides an effective gait training environment for in acute stroke rehabilitation.

9.
J Biomech Eng ; 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-30029258

ABSTRACT

In the absence of standardized symmetry assessments, quantifying symmetry based on the kinematic evolution of lower extremity joints can elucidate gait irregularities. The objective was to develop a novel cyclogram based symmetry (CBS) method to quantify lower extremity joints' symmetry and assess the effect of 6-month utilization of foot drop stimulator (FDS) on CBS of the lower limbs during hemiplegic gait post stroke. Twenty-four participants (13 stroke and 11 healthy controls (HC)) performed 10 walking trials at a free cadence on level ground. Symmetry values were computed using geometric properties of bilateral cyclograms obtained from normalized sagittal ankle, knee and hip kinematics. CBS and traditional temporospatial symmetry values were compared between the two groups using independent sample t-test. Effect of FDS utilization on symmetry was assessed by paired sample t- test computed at baseline and 6-month follow up. The CBS method successfully showed that the HC group was significantly more symmetrical at the ankle (p=0.001), knee (p=0.001) and hip (p<0.005) compared with the stroke group. The stroke group showed significant increment in hip symmetry with FDS at baseline but did not show any significant CBS changes at follow up. Pearson correlations revealed that hip and knee CBS had a significant influence on overall walking speed. The CBS method presents a unique approach to calculate symmetry based on the kinematics of lower extremities during gait.

10.
IEEE Trans Neural Syst Rehabil Eng ; 26(3): 675-686, 2018 03.
Article in English | MEDLINE | ID: mdl-29522411

ABSTRACT

Surface electromyography (sEMG) data acquired during lower limb movements has the potential for investigating knee pathology. Nevertheless, a major challenge encountered with sEMG signals generated by lower limb movements is the intersubject variability, because the signals recorded from the leg or thigh muscles are contingent on the characteristics of a subject such as gait activity and muscle structure. In order to cope with this difficulty, we have designed a three-step classification scheme. First, the multichannel sEMG is decomposed into activities of the underlying sources by means of independent component analysis via entropy bound minimization. Next, a set of time-domain features, which would best discriminate various movements, are extracted from the source estimates. Finally, the feature selection is performed with the help of the Fisher score and a scree-plot-based statistical technique, prior to feeding the dimension-reduced features to the linear discriminant analysis. The investigation involves 11 healthy subjects and 11 individuals with knee pathology performing three different lower limb movements, namely, walking, sitting, and standing, which yielded an average classification accuracy of 96.1% and 86.2%, respectively. While the outcome of this study per se is very encouraging, with suitable improvement, the clinical application of such an sEMG-based pattern recognition system that distinguishes healthy and knee pathological subjects would be an attractive consequence.


Subject(s)
Electromyography/classification , Knee Injuries/physiopathology , Lower Extremity/physiology , Movement/physiology , Algorithms , Biomechanical Phenomena , Discriminant Analysis , Electromyography/statistics & numerical data , Entropy , Healthy Volunteers , Humans , Lower Extremity/physiopathology , Male , Muscle, Skeletal/physiology , Walking/physiology , Young Adult
11.
J Spinal Cord Med ; 41(5): 518-528, 2018 09.
Article in English | MEDLINE | ID: mdl-28427305

ABSTRACT

OBJECTIVE: To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. DESIGN: Single-session. SETTING: Motion analysis laboratory. PARTICIPANTS: Four AB individuals and four individuals with SCI. INTERVENTIONS: Powered lower extremity exoskeleton. OUTCOME MEASURES: Temporal-spatial parameters, kinematics, walking velocity and electromyography data. RESULTS: AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. CONCLUSION: The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.


Subject(s)
Adaptation, Physiological , Exoskeleton Device , Neurological Rehabilitation/methods , Robotics/methods , Spinal Cord Injuries/physiopathology , Walking , Adult , Humans , Male , Neurological Rehabilitation/instrumentation , Robotics/instrumentation , Spinal Cord Injuries/rehabilitation
12.
Front Neurol ; 8: 449, 2017.
Article in English | MEDLINE | ID: mdl-28900414

ABSTRACT

BACKGROUND: A foot drop stimulator (FDS) is a rehabilitation intervention that stimulates the common peroneal nerve to facilitate ankle dorsiflexion at the appropriate time during post-stroke hemiplegic gait. Time-frequency analysis (TFA) of non-stationary surface electromyograms (EMG) and spectral variables such as instantaneous mean frequency (IMNF) can provide valuable information on the long-term effects of FDS intervention in terms of changes in the motor unit (MU) recruitment during gait, secondary to improved dorsiflexion. OBJECTIVE: The aim of this study was to apply a wavelet-based TFA approach to assess the changes in neuromuscular activation of the tibialis anterior (TA), soleus (SOL), and gastrocnemius (GA) muscles after utilization of an FDS during gait post-stroke. METHODS: Surface EMG were collected bilaterally from the TA, SOL, and GA muscles from six participants (142.9 ± 103.3 months post-stroke) while walking without the FDS at baseline and 6 months post-FDS utilization. Continuous wavelet transform was performed to get the averaged time-frequency distribution of band pass filtered (20-300 Hz) EMGs during multiple walking trials. IMNFs were computed during normalized gait and were averaged during the stance and swing phases. Percent changes in the energies associated with each frequency band of 25 Hz between 25 and 300 Hz were computed and compared between visits. RESULTS: Averaged time-frequency representations of the affected TA, SOL, and GA EMG show altered spectral attributes post-FDS utilization during normalized gait. The mean IMNF values for the affected TA were significantly lower than the unaffected TA at baseline (p = 0.026) and follow-up (p = 0.038) during normalized stance. The mean IMNF values significantly increased (p = 0.017) for the affected GA at follow-up during normalized swing. The frequency band of 250-275 Hz significantly increased in the energies post-FDS utilization for all muscles. CONCLUSION: The application of wavelet-based TFA of EMG and outcome measures (IMNF, energy) extracted from the time-frequency distributions suggest alterations in MU recruitment strategies after the use of FDS in individuals with chronic stroke. This further establishes the efficacy of FDS as a rehabilitation intervention that may promote motor recovery in addition to treating the secondary complications of foot drop due to post-stroke hemiplegia.

13.
Am J Physiol Regul Integr Comp Physiol ; 312(3): R443-R450, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28100474

ABSTRACT

Muscle shortening and volume displacement (VD) are critical determinants of the pressure-generating capacity of the diaphragm. The present study was designed to test the hypothesis that diaphragm VD is heterogeneous and that distribution of VD is dependent on regional muscle shortening, posture, and the level of muscle activation. Radioopaque markers were sutured along muscle bundles of the peritoneal surface of the crural, dorsal costal, midcostal, and ventral costal regions of the left hemidiaphragm in four dogs. The markers were followed by biplanar video fluoroscopy during quiet spontaneous breathing, passive inflation to total lung capacity (TLC), and inspiratory efforts against an occluded airway at three lung volumes spanning the vital capacity [functional residual capacity, functional residual capacity + ½ inspiratory capacity, and TLC in both the prone and supine postures]. Our data show the ventral costal diaphragm had the largest VD and contributed nearly two times to the total diaphragm VD compared with the dorsal costal portion. In addition, the ventral costal diaphragm contributed nearly half of the total VD in the prone position, whereas it only contributed a quarter of the total VD in the supine postition. During efforts against an occluded airway and during passive inflation to TLC in the supine position, the crural diaphragm displaced volume equivalent to that of the midcostal portion. Regional muscle shortening closely matched regional VD. We conclude that the primary force generator of the diaphragm is primarily dominated by the contribution of the ventral costal region to its VD.


Subject(s)
Diaphragm/anatomy & histology , Diaphragm/physiology , Muscle Contraction/physiology , Posture/physiology , Respiratory Mechanics/physiology , Tidal Volume/physiology , Animals , Diaphragm/diagnostic imaging , Dogs , Female , Organ Size/physiology
14.
IEEE Trans Neural Syst Rehabil Eng ; 25(8): 1268-1277, 2017 08.
Article in English | MEDLINE | ID: mdl-27834646

ABSTRACT

The goal of this paper is to demonstrate a novel approach that combines Empirical Mode Decomposition (EMD) with Notch filtering to remove the electrical stimulation (ES) artifact from surface electromyogram (EMG) data for interpretation of muscle responses during functional electrical stimulation (FES) experiments. FES was applied to the rectus femoris (RF) muscle unilaterally of six able bodied (AB) and one individual with spinal cord injury (SCI). Each trial consisted of three repetitions of ES. We hypothesized that the EMD algorithm provides a suitable platform for decomposing the EMG signal into physically meaningful intrinsic mode functions (IMFs) which can be further used to isolate electrical stimulation (ES) artifact. A basic EMD algorithm was used to decompose the EMG signals collected during FES into IMFs for each repetition separately. IMFs most contaminated by ES were identified based on the standard deviation (SD) of each IMF. Each artifact IMF was Notch filtered to filter ES harmonics and added to remaining IMFs containing pure EMG data to get a version of a filtered EMG signal. Of all such versions of filtered signals generated from each artifact IMF, the one with maximum signal to noise ratio (SNR) was chosen as the final output. The validity of the filtered signal was assessed by quantitative metrics, 1) root mean squared error (RMSE) and signal to noise (SNR) ratio values obtained by comparing a clean EMG and EMD-Notch filtered signal from the combination of simulated ES and clean EMG and, 2) using EMG-force correlation analysis on the data collected from AB individuals. Finally, the potential applicability of this algorithm on a neurologically impaired population was shown by applying the algorithm on EMG data collected from an individual with SCI. EMD combined with Notch filtering successfully extracted the EMG signal buried under ES artifact. Filtering performance was validated by smaller RMSE values and greater SNR post filtering. The amplitude values of the filtered EMG signal were seen to be consistent for three repetitions of ES and there was no significant difference among the repetition for all subjects. For the individual with a SCI the algorithm was shown to successfully isolate the underlying bursts of muscle activations during FES. The data driven nature of EMD algorithm and its ability to act as a filter bank at different bandwidths make this method extremely suitable for dissecting ES induced EMG into IMFs. Such IMFs clearly show the presence of ES artifact at different intensities as well as pure artifact free EMG. This allows the application of Notch filters to IMFs containing ES artifact to further isolate the EMG. As a result of such stepwise approach, the extraction of EMG is achieved with minimal data loss. This study provides a unique approach to dissect and interpret the EMG signal during FES applications.


Subject(s)
Algorithms , Artifacts , Electric Stimulation Therapy/methods , Electromyography/methods , Muscle, Skeletal/physiopathology , Neurophysiological Monitoring/methods , Spinal Cord Injuries/rehabilitation , Adult , Data Interpretation, Statistical , Diagnosis, Computer-Assisted/methods , Humans , Male , Middle Aged , Muscle Contraction , Muscle, Skeletal/innervation , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/physiopathology , Therapy, Computer-Assisted/methods
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 25-28, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268272

ABSTRACT

Balance dysfunction is one of the most disabling aspects of Traumatic Brain Injury (TBI). Without rapid transmission and accurate perception of somatosensory inputs, the automatic postural responses required during standing may be delayed or absent after TBI which can lead to instability. Further, the sensitivity level to which environmental perturbations can be detected is also vital, as the central nervous system will only employ balance control strategies when it perceives a change in equilibrium. Such undetectable perturbations, however small they may be, can result in fatal falls, especially after TBI. In this investigation we used a novel computerized biofeedback based (CBB) intervention aimed at improving perception of external perturbations, and static and dynamic balance in a single male participant with severe TBI. We used an adaptive single interval adjustment matrix (SIAM) protocol to determine the perception of perturbation threshold (PPT) at baseline (1 day pre-intervention) and follow up (1 day post-intervention). External perturbations were provided through sinusoidal translations of 0.5 Hz to the base of support in anterior-posterior direction. Outcome measures included PPT, the Berg balance scale (BBS) and bilateral surface electromyography (EMG) of the lower limbs at baseline and follow up. PPT assessment post intervention showed a decrease in PPT, suggesting an improvement in the ability (gain of 0.42 mm) to detect (even smaller) perturbations which were not perceivable prior to the intervention. There was a significant increase in BBS (6 points) at follow up. The participant demonstrated increased muscle activation for the right gastrocnemius, left soleus, right bicep femoris and left vastus lateralis muscles at follow up. This investigation demonstrate the potential use of the CBB intervention for improving interpretation and organization of multisensory information in a task specific environment to improve balance dysfunction post TBI.


Subject(s)
Biofeedback, Psychology , Brain Injuries, Traumatic/rehabilitation , Muscle, Skeletal/physiology , Postural Balance/physiology , Accidental Falls/prevention & control , Brain-Computer Interfaces , Computers , Electromyography , Humans , Male , Posture/physiology
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1733-1736, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268661

ABSTRACT

This paper presents the validity of Empirical Mode Decomposition (EMD) combined with Notch filtering to remove the electrical stimulation (ES) artifact from surface electromyogram (EMG) data for interpretation of muscle responses during Functional Electrical Stimulation (FES) experiments. We hypothesized that the EMD algorithm provides a suitable platform for decomposing the EMG signal into physically meaningful intrinsic mode functions (IMFs) which can be further used to isolate electrical stimulation (ES) artifact. The basic EMD algorithm was used to decompose the ES induced EMG signals into IMFs. IMFs most contaminated by ES were identified based on the standard deviation (SD) criterion. An IMF with the maximum signal to noise ratio (SNR) was Notch filtered and added to IMFs containing pure EMG data to get the filtered EMG signal. The method was tested on 5 able bodied (AB) and 2 spinal cord injured (SCI) participants. The validity of the filtered signal was assessed by normalized root mean squared error (NRMSE) and signal to noise (SNR) ratio values obtained by comparing a clean EMG collected during maximum volitional contraction (MVC) and EMD-Notch filtered signal from the combination of a clean EMG with i) simulated ES and, ii) real ES with no activation generated at different ES amplitudes. The results showed that the EMD-Notch filtering approach was successful, reliable and repeatable in extracting pure muscle responses during ES showing improved values for NRMSE and SNR in both AB and SCI individuals.


Subject(s)
Electric Stimulation , Electromyography , Algorithms , Artifacts , Humans
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3143-3146, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268974

ABSTRACT

The goal of this paper is to study the effects of supine and stand retraining (SRT) interventions with and without multi muscle neuromuscular electrical stimulation (NMES) on the neuromuscular EMG responses of the leg muscles for individuals with motor complete SCI during walking on a body-weight support (BWS) treadmill. The main outcome variables were EMG amplitude, integrated EMG and co-contraction indices (co-excitation and co-activation) collected during a 10-minute walking treadmill trial. Data was analyzed for the first, fifth and tenth minute of walking. Results showed that both Supine+NMES and SRT+NMES interventions increased spatial-temporal aspects of muscle activity (mean EMG amplitude and integrated EMG) of lower limb muscles. SRT+NMES (loading) showed greater gains in the proximal anterior leg compartments. On the contrary, SRT without NMES (SRT only) exhibited deterioration of activity within the same muscle groups. Co-contraction indices increased for both post-NMES interventions suggesting that task-specificity of training is important to achieve the fundamental reciprocal firing known to able-bodied gait. These results show that combination of NMES+loading during passive rhythmic gait will induce neuroplasticity in the lower limbs that ultimately provides a potential effective means to recover gait in individuals with SCI.


Subject(s)
Electric Stimulation Therapy , Muscle, Skeletal/physiology , Spinal Cord Injuries/rehabilitation , Walking/physiology , Adult , Electromyography , Humans , Male , Posture , Supine Position , Young Adult
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 6377-6380, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269707

ABSTRACT

The purpose of the present case series was to investigate whether three lower limb rehabilitation training approaches have any effects on trunk stability of persons with motor complete SCI during a 10-minute assisted walk. These trainings included electrical stimulation (ES), standing retraining (SRT), and a novel multi-modality approach that combined ES with SRT. We observed that multi-muscle ES directed at the lower limbs had a prominent, indirect effect on the upper and lower muscles of the trunk. More specifically, trunk muscle activations of the ES+SRT subject increased after training for the more distal muscles of the trunk. This study provides preliminary evidence that combining lower limb ES with SRT may provide beneficial effects in improving trunk control and stability.


Subject(s)
Electric Stimulation Therapy/methods , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Torso/physiopathology , Walking , Adult , Humans , Lower Extremity/physiopathology , Male , Muscle, Skeletal/physiology , Posture , Young Adult
19.
Phys Med Rehabil Clin N Am ; 24(2): 247-63, 2013 May.
Article in English | MEDLINE | ID: mdl-23598261

ABSTRACT

This review discusses challenges faced by clinicians and researchers when measuring ambulation in individuals with central neurologic disorders within 3 distinct environments: clinical, laboratory, and community. Even the most robust measure of ambulation is affected by the environment in which it is implemented and by the clinical or research question and the specificity of the hypothesis being investigated. The ability to accurately measure ambulation (one of the most important metrics used to show transition into a community environment) is essential to measure treatment effectiveness and rehabilitation outcomes in populations with central neurologic disorders.


Subject(s)
Central Nervous System Diseases , Gait/physiology , Walking , Adult , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/physiopathology , Central Nervous System Diseases/rehabilitation , Humans
20.
J Rehabil Res Dev ; 46(7): 931-8, 2009.
Article in English | MEDLINE | ID: mdl-20104415

ABSTRACT

The objective of this study was to compare the rolling resistance of four common manual wheelchair tires (two pneumatic and two airless solid) and the solid tires used on a commercially available force- and moment-sensing wheel. Coast-down tests were performed with a wheelchair positioned on a two-drum dynamometer. Within each of three load conditions, tire type had a significant effect on rolling resistance (p < 0.001). The pneumatic tires had smaller rolling resistances and were less affected by load increases than the solid tires. Within the two tire types, higher air pressure or firmness and lower profile tread corresponded to less rolling resistance. Wheelchair users, clinicians, and researchers must consider the effect of tire type on wheelchair rolling resistance when selecting a manual wheelchair tire.


Subject(s)
Wheelchairs , Equipment Design , Humans , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...