Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 44(3): 495-505, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33067668

ABSTRACT

The recyclability of cellulase enzymes using zeolite and polyethylene glycol (PEG) was investigated. The cellulase enzymes from cellulose hydrolysate suspensions were adsorbed onto zeolite-ß under typical working conditions (pH 5). PEG having a molecular weight of 200 Da and 20 kDa was used as an eluent to desorb the cellulase enzymes from zeolite-ß. Adsorption and desorption profiles of cellulase enzymes were studied by varying pH, PEG concentration, and salt concentration. Maximum binding capacity, qm of the zeolite decreased by increasing the pH, or by introducing PEG. At pH 5, the qm of the zeolite was determined to be 121 × 10-3 g/g. About 24%, 51% and 75% of the adsorbed enzyme can be recovered using 1 M NaCl, PEG 200 and PEG 20000, respectively. The specific activity of the recovered enzyme increased by 57% due to the presence of residual PEG.


Subject(s)
Cellulase/chemistry , Polyethylene Glycols/chemistry , Zeolites/chemistry , Adsorption , Hydrogen-Ion Concentration
2.
Article in English | MEDLINE | ID: mdl-31921814

ABSTRACT

Reject fines, a waste stream of short lignocellulosic fibers produced from paper linerboard recycling, are a cellulose-rich paper mill byproduct that can be hydrolyzed enzymatically into fermentable sugars. In this study, the use of hydrolyzed reject fines as a carbon source for bacterial biosynthesis of poly(R-3-hydroxyalkanoate) (PHA) and poly(γ-glutamic acid) (PGA) was investigated. Recombinant Escherichia coli harboring PHA biosynthesis genes were cultivated with purified sugars or crude hydrolysate to produce both poly(R-3-hydroxybutyrate) (PHB) homopolymer and medium chain length-containing copolymer (PHB-co-MCL). Wild-type Bacillus licheniformis WX-02 were cultivated with crude hydrolysate to produce PGA. Both PHB and short chain-length-co-medium chain-length (SCL-co-MCL) PHA yields from crude hydrolysate were a 2-fold improvement over purified sugars, and the MCL monomer fraction was decreased slightly in copolymers produced from crude hydrolysate. PGA yield from crude hydrolysate was similarly increased 2-fold. The results suggest that sugars from hydrolyzed reject fines are a viable carbon source for PHA and PGA biosynthesis. The use of crude hydrolysate is not only possible but beneficial for biopolymer production, eliminating the need for costly separation and purification techniques. This study demonstrates the potential to divert a lignocellulosic waste stream into valuable biomaterials, mitigating the environmental impacts of solid waste disposal.

3.
Bioprocess Biosyst Eng ; 40(6): 799-806, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28197730

ABSTRACT

Recycled paper mills produce large quantities of fibrous rejects and fines which are usually sent to landfills as solid waste. These cellulosic materials can be enzymatically hydrolyzed into sugars for the production of biofuels and biomaterials. Paper mill wastes also contain large amounts of calcium carbonate which inhibits cellulase activity. The calcium carbonate (30%, w/w) decreased 40-60% of sugar yield of unbleached softwood kraft pulp. The prime mechanisms for this are by pH variation, competitive and non-productive binding, and aggregation effect. Addition of acetic acid (pH adjustment) increased the sugar production from 19 to 22 g/L of paper mill waste fibers. Strong affinity of enzyme-calcium carbonate decreased free enzyme in solution and hindered sugar production. Electrostatic and hydrogen bond interactions are mainly possible mechanism of enzyme-calcium carbonate adsorption. The application of the nonionic surfactant Tween 80 alleviated the non-productive binding of enzyme with the higher affinity on calcium carbonate. Dissociated calcium ion also inhibited the hydrolysis by aggregation of enzyme.


Subject(s)
Calcium Carbonate/metabolism , Cellulase , Cellulose , Hydrolysis , Paper , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...